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l. Introduction: A New Paradigm for an Enduring
Challenge

1.1 The Computational Bottleneck of Fluid Dynamics

Fluid dynamics is a foundational discipline in science and engineering, governing phenomena
from atmospheric circulation and blood flow to the aerodynamics of an aircraft wing.' For
centuries, the field has been governed by a set of complex, nonlinear partial differential
equations known as the Navier-Stokes equations, which describe the motion of viscous
fluids.® While these equations are the cornerstone of modern fluid mechanics, solving them at
scale for real-world problems remains a formidable, and often intractable, challenge. The
primary obstacle is the computational cost required to resolve the wide range of length and
time scales, particularly in turbulent flows. The computational expense of a Direct Numerical
Simulation (DNS), which resolves all features of the flow, scales roughly as

Re3, where Re is the Reynolds number.? This means that a mere tenfold increase in the
Reynolds number can lead to a thousandfold increase in computational cost, rendering
high-fidelity simulations for large-scale systems like airplane design or climate prediction
computationally unfeasible with current technology.?
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To circumvent this computational bottleneck, engineers and scientists have historically relied
on approximations and models that trade accuracy for efficiency. These include methods like
Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES), which are widely
used in industrial applications due to their relative tractability.> However, these models often
rely on empirical relations and simplifying assumptions, which can reduce their accuracy in
complex flow regimes and limit their universality.* The inability to devise a single, universal
model for all turbulence flows is a persistent challenge that has long defined the field.° As a
result, a fundamental trade-off has existed between accuracy and computational tractability,
a dilemma that has historically limited the scope of what is possible in both scientific inquiry
and engineering design.’

The emergence of artificial intelligence (Al) and machine learning (ML) presents a new and
revolutionary approach to this enduring challenge. As computational tools have evolved from
pen-and-paper theory to computer-aided modeling, the advent of Al represents the latest
chapter in this progression, driven by the proliferation of extensive datasets from advanced
sensors and large-scale simulations.” This convergence of computational demands and
abundant data has created a fertile ground for Al to not only accelerate existing methods but
also to fundamentally transform how fluid dynamics problems are approached.

1.2 The Emergence of Data-Driven Approaches

For many decades, the study of fluid dynamics has been supported by three foundational
pillars: theoretical analysis, experimental measurement, and computational fluid dynamics
(CFD).° In recent years, data-driven fluid dynamics has solidified its place as a powerful fourth
pillar, leveraging the unprecedented volumes of data from simulations and experiments to
extract insights and develop new models." This new methodological framework provides a
robust information-processing capability that can augment and even transform current lines
of research and industrial applications.’

The integration of Al techniques into this fourth pillar signifies a major shift in methodology.
Rather than being mere enhancements to existing computational tools, machine learning,
deep learning (DL), and reinforcement learning (RL) are being applied as powerful frameworks
to solve problems that are not amenable to traditional analytical or numerical treatment.”
These Al methods are distinct in their ability to learn complex, nonlinear relationships directly
from data, enabling them to make rapid predictions and identify hidden patterns.” The initial
applications of this new toolkit focused on creating computationally inexpensive surrogate
models, while more recent work has moved towards a deeper integration with the underlying
physics. This evolution demonstrates a maturing understanding of the problem space, moving
from Al as a superficial augment to Al as a deeply integrated component of physical



modeling.’

ll. Evolution of Al in Fluid Dynamics: From
Augmentation to Integration

2.1 The Dawn of Computational Fluid Dynamics (CFD)

The historical trajectory of fluid dynamics is marked by a continuous evolution of its tools and
methodologies. The field’s theoretical foundation was laid by Claude-Louis Navier and George
Gabriel Stokes in 1822 with the formulation of their eponymous equations.® Decades later, the
groundwork for numerical solutions was established by Lewis Fry Richardson in 1928, whose
pioneering work on numerical weather prediction introduced the finite difference method.?
The true revolution in CFD, however, was catalyzed by the advent of digital computers in the
mid-20th century. This technological leap made it possible to tackle increasingly complex
problems, leading to the development of early CFD software and the introduction of crucial
turbulence models, such as the k- model in the 1980s.® These advancements enabled more
accurate simulations of real-world flows and expanded the reach of CFD into critical
engineering and design problems.*

2.2 The Rise of Data-Driven Surrogates

Early applications of machine learning in fluid dynamics were largely utilitarian, focused on
developing surrogate models to accelerate computationally expensive tasks. A surrogate
model is a fast, approximate replica of a high-fidelity simulation or physical experiment."
These models, which can be based on techniques like regression or classification, learn the
relationship between a set of input parameters and an output variable (e.g., lift, drag, or
temperature).'® This approach allows for the rapid exploration of vast design spaces, a task
that would be prohibitively time-consuming with traditional CFD simulations.” Engineers could
use these surrogates to quickly identify promising designs, which would then be validated
with a small number of expensive, full-fidelity simulations. Techniques such as Gaussian
Processes (Kriging) and Radial Basis Functions (RBFs) were employed to interpolate or



approximate system responses from scattered data points, effectively balancing the need for
accuracy with the computational budget.” This initial phase of Al integration was
characterized by its agnosticism to the underlying physics, relying solely on input-output data
pairs to learn the system behavior."

2.3 The Hybrid and Physics-Informed Revolution

A major paradigm shift has occurred as the field moved beyond purely data-driven,
"black-box" models to more sophisticated hybrid approaches.? This evolution was driven by
the recognition that while pure ML models can be extremely efficient, they often struggle with
fundamental physical constraints, such as conservation of momentum, and may not
generalize well to unseen conditions.? A significant portion of the literature and ongoing
development now focuses on methods that combine the best aspects of traditional
physics-based solvers with the speed of machine learning.?

One of the most prominent examples of this revolution is the development of
Physics-Informed Neural Networks (PINNs)." Unlike conventional neural networks that learn
solely from large datasets, PINNs embed the governing physical laws directly into their loss
function.™ During training, the network's output is continuously checked against the
expectations of the physical equations, and it learns by minimizing the "residual,”" or the
amount by which its solution fails to satisfy those equations.'? This approach promises a
viable alternative to classical numerical methods for solving partial differential equations
(PDEs), with the potential to leverage future hardware like GPUs and quantum computers
more effectively.”

A complementary hybrid approach involves using Al to improve specific components of
traditional solvers. For instance, ML can be used to discover improved spatial discretizations
on a coarse grid, effectively making an under-resolved simulation as accurate as a traditional
solver with a much finer mesh.? This strategy, exemplified by the work of Kochkov et al. in

PNAS (2021) ?, allows for significant computational speedups while preserving the stability
and predictable generalization properties that are often lacking in purely data-driven models.’
This shift reflects a more mature understanding of Al's role, repositioning it not as a
replacement for traditional methods, but as a powerful tool for their augmentation and
enhancement.’



lll. Core Research Themes and Seminal Contributions

The integration of Al has created several distinct and vibrant research themes within fluid
dynamics. Each theme addresses a specific set of challenges, and together, they illustrate the
breadth of Al's transformative potential. The following table provides a summary of landmark

studies that have significantly shaped the field.

Study Title

Authors & Year

Core Finding

Machine
learning-accelerated
computational fluid
dynamics

Kochkov et al., 2021

Hybrid ML models can
improve accuracy and
speed (40-80x speedup)
on coarse grids while
maintaining stability and
generalizing to new
Reynolds numbers.?

Machine Learning
Strategies for Upgrading
Turbulence Modelling

Billard et al., 2025

A neural network-based
correction to a RANS model
successfully mitigated
shortcomings for
separated channel flow,
significantly improving the
prediction of the
separation region.'®

Discovering new solutions
to century-old problems in
fluid dynamics

DeepMind et al. (Brown,
NYU, Stanford), 2025

Used high-precision
Physics-Informed Neural
Networks (PINNs) to
systematically discover new
families of unstable
singularities ("blow-ups") in
the Navier-Stokes
equations, a long-standing
mathematical problem."

Large Language Model
Driven Development of
Turbulence Models

[Authors not listed], 2025

Demonstrated that a large
language model can act as
a collaborator in scientific




discovery, proposing and
refining physically
interpretable turbulence
models that outperform
baselines."’

3.1 Al for Turbulence Modeling and Simulation Acceleration

The accurate modeling of turbulence remains one of the greatest unsolved problems in
classical physics.® The high-fidelity simulation of turbulent flows, particularly for industrial
applications, is often computationally prohibitive.? Al is now being used to address this by
either augmenting traditional turbulence models or accelerating the simulation process itself.

One approach is to use Al to enhance existing models like RANS or LES. For example, a neural
network can be trained on high-fidelity DNS data to compute a correction to the turbulent
stress of a RANS model, thereby mitigating its shortcomings in complex flow regimes.”® The
work by Billard et al. (2025) demonstrated that an NN-enhanced RANS model could
significantly improve the prediction of flow separation, even when tested on cases with
different geometries or Reynolds numbers than those it was trained on."® A more recent and
promising development involves the use of large language models (LLMs) to reason about and
synthesize new turbulence models."” Instead of a "black-box" model, this approach uses an
LLM in a closed-loop, iterative workflow to propose, refine, and reason about physically
interpretable turbulence models that outperform baselines."”

A second major thrust is the use of Al for simulation acceleration. The work of Kochkov et al.
(2021) is a seminal contribution in this area. Their research introduced a method for learning a
numerical solver that can achieve the same accuracy as a traditional solver on a fine grid but
by using a much coarser mesh.? By replacing the components of the traditional solver most
affected by the loss of resolution with learned alternatives, their method achieved an
impressive 40- to 80-fold computational speedup.? This hybrid approach maintains stability
during long simulations and demonstrates robust generalization to novel forcing functions and
Reynolds numbers, a critical feature often lacking in purely data-driven methods.? This work
exemplifies how scientific computing can strategically leverage Al and hardware accelerators
to improve simulations without sacrificing accuracy or generalizability.?

3.2 Physics-Informed Neural Networks (PINNs) as PDE Solvers



Physics-Informed Neural Networks (PINNs) are a class of models that have demonstrated
success not only in engineering applications but also in tackling foundational scientific
problems. Their core strength lies in their ability to embed physical laws directly into their loss
function, which allows them to solve partial differential equations without requiring massive
amounts of labeled data.” Instead, the network learns by minimizing its "residual"—the
amount by which its solution fails to satisfy the governing equations, such as the
compressible Euler equations or the Navier-Stokes equations.' This framework offers a
compelling alternative to classical discretization methods, with potential advantages for
implementation on emerging hardware like GPUs and quantum computers.™

A landmark achievement that highlights the profound potential of this approach is the work by
Google DeepMind and its collaborators (2025)." They used high-precision PINNs to
systematically discover an entirely new family of mathematical "blow-ups," or singularities, in
some of the most complex equations that describe fluid motion." Finding a singularity in the
Navier-Stokes equations is a Millennium Prize Problem, and this breakthrough demonstrates
that Al can be used as a new instrument for foundational scientific discovery."” By embedding
mathematical insights into the PINN's training, the researchers were able to capture unstable
singularities that had long eluded conventional methods."” This work signifies a new era of
"computer-assisted mathematics," where Al can tackle long-standing challenges that have
resisted centuries of human effort."

3.3 Machine Learning for Flow Control and Optimization

Altering the natural dynamics of fluid flows is desirable for a vast range of engineering
applications, from reducing aircraft fuel consumption to preventing structural damage from
flow-induced oscillations.'” Al is proving to be an exceptionally powerful tool for both active
and passive flow control. Passive flow control involves fixed geometric modifications, such as
wing shape optimization, while active flow control requires energy input and real-time
actuation.®

Machine learning offers two primary paradigms for active flow control: model-free and
gradient-based methods.® Model-free approaches, such as Reinforcement Learning (RL),
treat the control problem as a black-box optimization.? An agent learns the optimal control
strategy through a trial-and-error process, interacting with the fluid environment to maximize
a reward signal, such as drag reduction.® These methods are promising for problems that are
not easily amenable to analytical treatment.® In contrast, gradient-based methods, such as
the deep learning partial differential equation augmentation method (DPM), use adjoints of



the governing equations to compute the end-to-end sensitivities needed for optimization.” A
study comparing these approaches found that the DPM-based controller was significantly
more effective and computationally less intensive to train than its DRL-based counterpart,
indicating the value of incorporating physics into the optimization process.'” Examples of
successful applications include reducing drag and stabilizing vortex shedding in flows over a
cylinder.®

3.4 Al for Data-Driven Fluid Mechanics Fundamentals

Beyond direct simulation and control, Al is also enabling new ways to analyze and understand
fluid dynamics from a fundamental perspective. One key application is reduced-order
modeling (ROM), which aims to capture the essential dynamics of a complex system in a
low-dimensional representation.® Nonlinear machine learning methods can achieve superb
data compression, creating a compact representation of a flow field that can be used for
faster simulations and control.® For example, a Gaussian Mixture Variational Autoencoder
(GMVAE) can encode high-dimensional flow data into a low-dimensional latent space that is
both physically meaningful and globally consistent.?°

Al is also being used for real-time prediction and forecasting, a process often referred to as
"nowcasting"." This involves leveraging the ability of Al to extract dynamic information from
time-sequence data, a task that goes beyond static image processing.” Examples of this
include using Al for short-term storm forecasting in Africa, predicting space weather, and
modeling blood flow for medical diagnostics.' These applications demonstrate the power of Al
to synthesize vast, dynamic datasets and provide rapid, actionable insights that would be

impossible with traditional methods.’

IV. Key Debates and Controversies

The rapid growth of Al in fluid dynamics has been accompanied by a number of technical and
philosophical debates that are central to the field's maturation. These discussions address
fundamental questions about model robustness, interpretability, and the role of data.

Debate Conflicting Viewpoints




Generalization vs.
Specificity

Hybrid Models:
Proponents argue that
models that incorporate
physics can generalize to
different forcing functions
and Reynolds numbers
outside of the training
data.” This is because the
underlying physical laws
provide a robust framework
that extends beyond the
training distribution.

Pure ML Models:
Detractors note that purely
data-driven "black-box"
models, which lack physics
constraints, often fail to
generalize. They perform
poorly on unseen data and
cannot enforce
fundamental laws like
conservation of
momentum, as their "logic"
is entirely dependent on
the training data and they
have no inherent ability to
extrapolate.2

The Black Box Problem &
Interpretability

Interpretability: This
viewpoint asserts that
models must be physically
interpretable to be
trustworthy for critical
engineering applications.’
A lack of understanding of
the underlying physical
reasons for a prediction is
a major hurdle to adoption,
especially in safety-critical
domains. This has spurred
the development of
Explainable Al (XAl)
methods to link model
predictions to physical
features.”

Performance: This
perspective prioritizes
speed and accuracy over
physical interpretation.21
For some problems, the
utility of the model's output
(e.g., reduced drag) is more
important than
understanding the inner
workings of the complex
neural network that
produced it.21 The
complexity of deep
learning can make
interpretability difficult, and
forcing it can sometimes
reduce model
performance.5

PINNs vs. Traditional CFD

PINNs: Proponents argue
that PINNs are a viable
alternative to classical

Traditional CFD: Detractors




methods, especially on
future hardware, as they
can directly solve PDEs."”
The discovery of fluid
singularities with PINNs

argue that PINNs may fail in
complex physical
phenomena like turbulence
compared to traditional
numerical methods.5 They

note that PINNs can take
much longer to "converge"
and that the calculated
weights are only valid for
that specific domain and
boundary conditions,
lacking the concept of
generalization or inference
that is critical for
engineering use cases.21

demonstrates their unique
ability to solve problems
that have long resisted
traditional methods."

4.1 Generalization vs. Specificity

The capacity of an Al model to perform well on data it has not been trained on—a property
known as generalization—is a central point of contention.?' The provided research highlights a
clear divide between "pure" machine learning models and "hybrid" approaches.? Pure ML
models that aim to replace an entire simulation can be extremely efficient but often exhibit
poor generalization because they do not explicitly enforce physical constraints like
conservation of mass and momentum.? Their performance outside the specific distribution of
their training data is often unpredictable and unreliable.”’ This represents a significant
limitation for engineering applications, where models must perform robustly under a wide
range of operating conditions.? In contrast, hybrid approaches that strategically integrate Al
within a traditional physics-based framework are shown to be more stable and demonstrate
robust generalization properties, even to different Reynolds numbers and forcing functions.?
This suggests that a more nuanced, integrated approach is required to build models that are
both fast and universally applicable.

4.2 The Black Box Problem and the Need for Interpretability

A significant hurdle to the widespread adoption of Al-augmented CFD is the "black box"
nature of many deep learning models.® In critical engineering applications, a prediction's



physical basis is as important as the prediction itself, as engineers need to understand

why a model behaves in a certain way to ensure safety and reliability.® This lack of
interpretability creates a trust deficit, preventing the models from moving beyond proofs of
concept to become trusted industrial tools.” To address this, the field is seeing a growing
focus on Explainable Al (XAl).* Methods such as additive-feature-attribution techniques are
being developed to link the input features of a model to its predictions, providing a physically
meaningful interpretation of the relationships it has learned from data.* Furthermore, the
recent demonstration that a large language model can develop physically interpretable
turbulence models with clear reasoning suggests a path forward where Al is not just a black
box but a collaborative partner in scientific discovery."

4.3 Data Requirements and Algorithmic Challenges

The success of data-driven methods is fundamentally tied to the availability and quality of
data, but this presents a paradox in fluid dynamics.® For many biomedical and engineering
problems, the data is not "massive,” which poses limitations for training data-hungry models.’
However, when dealing with turbulence, the sheer scale of high-fidelity simulations can
generate so much data that issues of storage, retrieval, and post-processing become
significant challenges.® The data paradox also underscores a lack of standardization. The
absence of high-fidelity, open databases for the scientific community hinders knowledge
sharing and the development of common benchmarks for model evaluation.® This highlights
the need for a strategic approach to data, focusing not just on obtaining "more data," but on
curating "smarter engineering data" that is relevant to the problem at hand.””

V. Gaps in the Literature and Future Research
Directions

Despite the significant progress, several critical gaps remain in the literature, which serve as a
roadmap for future research.

5.1 Bridging the Gap from Theory to Practice



Many of the Al models developed for fluid dynamics remain at the "proof-of-concept" stage.'
While they have demonstrated remarkable capabilities on canonical problems, there is a
persistent challenge in translating these promising results into robust, industrially scalable
tools that can handle the complex geometries and operational variability of real-world
applications.”” Future research must focus on the operational challenges of integrating Al
models into existing engineering workflows, including issues of database management,
feature engineering, and the coordination of different engineering groups.'® There is a critical
need for more research focused on the scalability and reliability of these models in a diverse
range of conditions.

5.2 The Need for Standardized Datasets and Benchmarks

A recurring theme in the provided literature is the scarcity of high-fidelity, open data, which
limits the development of robust Al models and hinders progress in the field.” To accelerate
research and foster collaboration, a concerted effort is needed to create and maintain publicly
available databases that are representative of a wide range of flow scenarios, including
complex geometries and multi-directional forces.” The creation of such standardized datasets
would allow for fair and reproducible comparisons between different Al methodologies,
establishing clear benchmarks for model performance and generalizability.”

5.3 Advancing Physics-Constrained and Explainable Al

The debates around generalization and interpretability point to a clear direction for future
work. Research should move beyond purely data-driven "black-box" models and focus on
developing more advanced hybrid frameworks that are not only accurate and efficient but
also physically consistent and interpretable.® This includes the continued development of
Physics-Informed Neural Networks (PINNs) to handle the complexities of turbulence and other
nonlinear phenomena.® Furthermore, the wider application of Explainable Al (XAl) methods is
essential to make Al models more trustworthy and to provide deeper insights into the
underlying physics of fluid flows.* The goal is to develop models that can provide accurate
data-derived physics-based equations, rather than relying on empirical relations.”



5.4 The Role of Foundation Models and LLMs

The recent breakthrough in using a large language model to reason about and propose novel
turbulence models suggests a new and profound frontier for Al in fluid dynamics."” This work
indicates that Al is no longer limited to simply augmenting human capabilities but can act as
an "equal partner" in scientific discovery, capable of performing complex, long-chain
reasoning and hypothesis generation."” Future research should explore how these foundation
models can be leveraged for other grand challenges in fluid dynamics, such as creating
self-learning simulations or autonomously discovering new physical laws. This represents a
potential paradigm shift, moving the field from computer-assisted design to
computer-assisted scientific discovery.

VI. Conclusion

The integration of artificial intelligence into fluid dynamics marks a transformative new era for
a field that has long been constrained by computational limitations. This literature review has
shown that Al is not a fleeting trend but a fundamental shift in methodology, evolving from
early, utilitarian applications in surrogate modeling to a deeply integrated, physics-informed
approach that is now tackling some of the discipline's most enduring challenges. The field has
progressed from using Al as a tool to accelerate existing methods to leveraging it as a novel
instrument for foundational scientific discovery, as evidenced by the breakthrough work on
fluid singularities in the Navier-Stokes equations.

Despite these remarkable advances, the field is at a transitional stage, grappling with critical
debates concerning generalization, interpretability, and the operational challenges of moving
from proof-of-concept models to scalable, industrial tools. The analysis highlights a clear
consensus: future progress depends on a strategic move toward hybrid, physically-informed,
and explainable Al models. The development of standardized, open datasets and the
exploration of new Al paradigms, such as the use of large language models for scientific
discovery, are essential to accelerating this progress. Ultimately, Al offers a new framework for
overcoming the computational trade-offs of the past and opens up unprecedented
opportunities for innovation in science and engineering. This review establishes a critical need
for new research that bridges the gap between theoretical Al advancements and practical
application, a challenge that is at the heart of the research undertaken in this thesis.
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