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I. Introduction: A New Paradigm for an Enduring 
Challenge 
 

 

1.1 The Computational Bottleneck of Fluid Dynamics 
 

Fluid dynamics is a foundational discipline in science and engineering, governing phenomena 
from atmospheric circulation and blood flow to the aerodynamics of an aircraft wing.1 For 
centuries, the field has been governed by a set of complex, nonlinear partial differential 
equations known as the Navier-Stokes equations, which describe the motion of viscous 
fluids.3 While these equations are the cornerstone of modern fluid mechanics, solving them at 
scale for real-world problems remains a formidable, and often intractable, challenge. The 
primary obstacle is the computational cost required to resolve the wide range of length and 
time scales, particularly in turbulent flows. The computational expense of a Direct Numerical 
Simulation (DNS), which resolves all features of the flow, scales roughly as 

Re3, where Re is the Reynolds number.2 This means that a mere tenfold increase in the 
Reynolds number can lead to a thousandfold increase in computational cost, rendering 
high-fidelity simulations for large-scale systems like airplane design or climate prediction 
computationally unfeasible with current technology.2 
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To circumvent this computational bottleneck, engineers and scientists have historically relied 
on approximations and models that trade accuracy for efficiency. These include methods like 
Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES), which are widely 
used in industrial applications due to their relative tractability.3 However, these models often 
rely on empirical relations and simplifying assumptions, which can reduce their accuracy in 
complex flow regimes and limit their universality.4 The inability to devise a single, universal 
model for all turbulence flows is a persistent challenge that has long defined the field.5 As a 
result, a fundamental trade-off has existed between accuracy and computational tractability, 
a dilemma that has historically limited the scope of what is possible in both scientific inquiry 
and engineering design.2 

The emergence of artificial intelligence (AI) and machine learning (ML) presents a new and 
revolutionary approach to this enduring challenge. As computational tools have evolved from 
pen-and-paper theory to computer-aided modeling, the advent of AI represents the latest 
chapter in this progression, driven by the proliferation of extensive datasets from advanced 
sensors and large-scale simulations.1 This convergence of computational demands and 
abundant data has created a fertile ground for AI to not only accelerate existing methods but 
also to fundamentally transform how fluid dynamics problems are approached. 

 

1.2 The Emergence of Data-Driven Approaches 
 

For many decades, the study of fluid dynamics has been supported by three foundational 
pillars: theoretical analysis, experimental measurement, and computational fluid dynamics 
(CFD).6 In recent years, data-driven fluid dynamics has solidified its place as a powerful fourth 
pillar, leveraging the unprecedented volumes of data from simulations and experiments to 
extract insights and develop new models.1 This new methodological framework provides a 
robust information-processing capability that can augment and even transform current lines 
of research and industrial applications.7 

The integration of AI techniques into this fourth pillar signifies a major shift in methodology. 
Rather than being mere enhancements to existing computational tools, machine learning, 
deep learning (DL), and reinforcement learning (RL) are being applied as powerful frameworks 
to solve problems that are not amenable to traditional analytical or numerical treatment.5 
These AI methods are distinct in their ability to learn complex, nonlinear relationships directly 
from data, enabling them to make rapid predictions and identify hidden patterns.9 The initial 
applications of this new toolkit focused on creating computationally inexpensive surrogate 
models, while more recent work has moved towards a deeper integration with the underlying 
physics. This evolution demonstrates a maturing understanding of the problem space, moving 
from AI as a superficial augment to AI as a deeply integrated component of physical 



modeling.2 

 

II. Evolution of AI in Fluid Dynamics: From 
Augmentation to Integration 
 

 

2.1 The Dawn of Computational Fluid Dynamics (CFD) 
 

The historical trajectory of fluid dynamics is marked by a continuous evolution of its tools and 
methodologies. The field’s theoretical foundation was laid by Claude-Louis Navier and George 
Gabriel Stokes in 1822 with the formulation of their eponymous equations.3 Decades later, the 
groundwork for numerical solutions was established by Lewis Fry Richardson in 1928, whose 
pioneering work on numerical weather prediction introduced the finite difference method.3 
The true revolution in CFD, however, was catalyzed by the advent of digital computers in the 
mid-20th century. This technological leap made it possible to tackle increasingly complex 
problems, leading to the development of early CFD software and the introduction of crucial 
turbulence models, such as the k-ε model in the 1980s.3 These advancements enabled more 
accurate simulations of real-world flows and expanded the reach of CFD into critical 
engineering and design problems.3 

 

2.2 The Rise of Data-Driven Surrogates 
 

Early applications of machine learning in fluid dynamics were largely utilitarian, focused on 
developing surrogate models to accelerate computationally expensive tasks. A surrogate 
model is a fast, approximate replica of a high-fidelity simulation or physical experiment.11 
These models, which can be based on techniques like regression or classification, learn the 
relationship between a set of input parameters and an output variable (e.g., lift, drag, or 
temperature).10 This approach allows for the rapid exploration of vast design spaces, a task 
that would be prohibitively time-consuming with traditional CFD simulations.9 Engineers could 
use these surrogates to quickly identify promising designs, which would then be validated 
with a small number of expensive, full-fidelity simulations. Techniques such as Gaussian 
Processes (Kriging) and Radial Basis Functions (RBFs) were employed to interpolate or 



approximate system responses from scattered data points, effectively balancing the need for 
accuracy with the computational budget.11 This initial phase of AI integration was 
characterized by its agnosticism to the underlying physics, relying solely on input-output data 
pairs to learn the system behavior.11 

 

2.3 The Hybrid and Physics-Informed Revolution 
 

A major paradigm shift has occurred as the field moved beyond purely data-driven, 
"black-box" models to more sophisticated hybrid approaches.2 This evolution was driven by 
the recognition that while pure ML models can be extremely efficient, they often struggle with 
fundamental physical constraints, such as conservation of momentum, and may not 
generalize well to unseen conditions.2 A significant portion of the literature and ongoing 
development now focuses on methods that combine the best aspects of traditional 
physics-based solvers with the speed of machine learning.2 

One of the most prominent examples of this revolution is the development of 
Physics-Informed Neural Networks (PINNs).12 Unlike conventional neural networks that learn 
solely from large datasets, PINNs embed the governing physical laws directly into their loss 
function.12 During training, the network's output is continuously checked against the 
expectations of the physical equations, and it learns by minimizing the "residual," or the 
amount by which its solution fails to satisfy those equations.12 This approach promises a 
viable alternative to classical numerical methods for solving partial differential equations 
(PDEs), with the potential to leverage future hardware like GPUs and quantum computers 
more effectively.13 

A complementary hybrid approach involves using AI to improve specific components of 
traditional solvers. For instance, ML can be used to discover improved spatial discretizations 
on a coarse grid, effectively making an under-resolved simulation as accurate as a traditional 
solver with a much finer mesh.2 This strategy, exemplified by the work of Kochkov et al. in 

PNAS (2021) 2, allows for significant computational speedups while preserving the stability 
and predictable generalization properties that are often lacking in purely data-driven models.2 
This shift reflects a more mature understanding of AI's role, repositioning it not as a 
replacement for traditional methods, but as a powerful tool for their augmentation and 
enhancement.2 

 



III. Core Research Themes and Seminal Contributions 
 

The integration of AI has created several distinct and vibrant research themes within fluid 
dynamics. Each theme addresses a specific set of challenges, and together, they illustrate the 
breadth of AI's transformative potential. The following table provides a summary of landmark 
studies that have significantly shaped the field. 

 

Study Title Authors & Year Core Finding 

Machine 
learning–accelerated 
computational fluid 
dynamics 

Kochkov et al., 2021 Hybrid ML models can 
improve accuracy and 
speed (40-80x speedup) 
on coarse grids while 
maintaining stability and 
generalizing to new 
Reynolds numbers.2 

Machine Learning 
Strategies for Upgrading 
Turbulence Modelling 

Billard et al., 2025 A neural network-based 
correction to a RANS model 
successfully mitigated 
shortcomings for 
separated channel flow, 
significantly improving the 
prediction of the 
separation region.16 

Discovering new solutions 
to century-old problems in 
fluid dynamics 

DeepMind et al. (Brown, 
NYU, Stanford), 2025 

Used high-precision 
Physics-Informed Neural 
Networks (PINNs) to 
systematically discover new 
families of unstable 
singularities ("blow-ups") in 
the Navier-Stokes 
equations, a long-standing 
mathematical problem.12 

Large Language Model 
Driven Development of 
Turbulence Models 

[Authors not listed], 2025 Demonstrated that a large 
language model can act as 
a collaborator in scientific 



discovery, proposing and 
refining physically 
interpretable turbulence 
models that outperform 
baselines.17 

 

3.1 AI for Turbulence Modeling and Simulation Acceleration 
 

The accurate modeling of turbulence remains one of the greatest unsolved problems in 
classical physics.5 The high-fidelity simulation of turbulent flows, particularly for industrial 
applications, is often computationally prohibitive.2 AI is now being used to address this by 
either augmenting traditional turbulence models or accelerating the simulation process itself. 

One approach is to use AI to enhance existing models like RANS or LES. For example, a neural 
network can be trained on high-fidelity DNS data to compute a correction to the turbulent 
stress of a RANS model, thereby mitigating its shortcomings in complex flow regimes.16 The 
work by Billard et al. (2025) demonstrated that an NN-enhanced RANS model could 
significantly improve the prediction of flow separation, even when tested on cases with 
different geometries or Reynolds numbers than those it was trained on.16 A more recent and 
promising development involves the use of large language models (LLMs) to reason about and 
synthesize new turbulence models.17 Instead of a "black-box" model, this approach uses an 
LLM in a closed-loop, iterative workflow to propose, refine, and reason about physically 
interpretable turbulence models that outperform baselines.17 

A second major thrust is the use of AI for simulation acceleration. The work of Kochkov et al. 
(2021) is a seminal contribution in this area. Their research introduced a method for learning a 
numerical solver that can achieve the same accuracy as a traditional solver on a fine grid but 
by using a much coarser mesh.2 By replacing the components of the traditional solver most 
affected by the loss of resolution with learned alternatives, their method achieved an 
impressive 40- to 80-fold computational speedup.2 This hybrid approach maintains stability 
during long simulations and demonstrates robust generalization to novel forcing functions and 
Reynolds numbers, a critical feature often lacking in purely data-driven methods.2 This work 
exemplifies how scientific computing can strategically leverage AI and hardware accelerators 
to improve simulations without sacrificing accuracy or generalizability.2 

 

3.2 Physics-Informed Neural Networks (PINNs) as PDE Solvers 



 

Physics-Informed Neural Networks (PINNs) are a class of models that have demonstrated 
success not only in engineering applications but also in tackling foundational scientific 
problems. Their core strength lies in their ability to embed physical laws directly into their loss 
function, which allows them to solve partial differential equations without requiring massive 
amounts of labeled data.12 Instead, the network learns by minimizing its "residual"—the 
amount by which its solution fails to satisfy the governing equations, such as the 
compressible Euler equations or the Navier-Stokes equations.12 This framework offers a 
compelling alternative to classical discretization methods, with potential advantages for 
implementation on emerging hardware like GPUs and quantum computers.13 

A landmark achievement that highlights the profound potential of this approach is the work by 
Google DeepMind and its collaborators (2025).12 They used high-precision PINNs to 
systematically discover an entirely new family of mathematical "blow-ups," or singularities, in 
some of the most complex equations that describe fluid motion.12 Finding a singularity in the 
Navier-Stokes equations is a Millennium Prize Problem, and this breakthrough demonstrates 
that AI can be used as a new instrument for foundational scientific discovery.12 By embedding 
mathematical insights into the PINN's training, the researchers were able to capture unstable 
singularities that had long eluded conventional methods.12 This work signifies a new era of 
"computer-assisted mathematics," where AI can tackle long-standing challenges that have 
resisted centuries of human effort.12 

 

3.3 Machine Learning for Flow Control and Optimization 
 

Altering the natural dynamics of fluid flows is desirable for a vast range of engineering 
applications, from reducing aircraft fuel consumption to preventing structural damage from 
flow-induced oscillations.19 AI is proving to be an exceptionally powerful tool for both active 
and passive flow control. Passive flow control involves fixed geometric modifications, such as 
wing shape optimization, while active flow control requires energy input and real-time 
actuation.8 

Machine learning offers two primary paradigms for active flow control: model-free and 
gradient-based methods.8 Model-free approaches, such as Reinforcement Learning (RL), 
treat the control problem as a black-box optimization.8 An agent learns the optimal control 
strategy through a trial-and-error process, interacting with the fluid environment to maximize 
a reward signal, such as drag reduction.8 These methods are promising for problems that are 
not easily amenable to analytical treatment.8 In contrast, gradient-based methods, such as 
the deep learning partial differential equation augmentation method (DPM), use adjoints of 



the governing equations to compute the end-to-end sensitivities needed for optimization.19 A 
study comparing these approaches found that the DPM-based controller was significantly 
more effective and computationally less intensive to train than its DRL-based counterpart, 
indicating the value of incorporating physics into the optimization process.19 Examples of 
successful applications include reducing drag and stabilizing vortex shedding in flows over a 
cylinder.8 

 

3.4 AI for Data-Driven Fluid Mechanics Fundamentals 
 

Beyond direct simulation and control, AI is also enabling new ways to analyze and understand 
fluid dynamics from a fundamental perspective. One key application is reduced-order 
modeling (ROM), which aims to capture the essential dynamics of a complex system in a 
low-dimensional representation.6 Nonlinear machine learning methods can achieve superb 
data compression, creating a compact representation of a flow field that can be used for 
faster simulations and control.6 For example, a Gaussian Mixture Variational Autoencoder 
(GMVAE) can encode high-dimensional flow data into a low-dimensional latent space that is 
both physically meaningful and globally consistent.20 

AI is also being used for real-time prediction and forecasting, a process often referred to as 
"nowcasting".1 This involves leveraging the ability of AI to extract dynamic information from 
time-sequence data, a task that goes beyond static image processing.5 Examples of this 
include using AI for short-term storm forecasting in Africa, predicting space weather, and 
modeling blood flow for medical diagnostics.1 These applications demonstrate the power of AI 
to synthesize vast, dynamic datasets and provide rapid, actionable insights that would be 
impossible with traditional methods.9 

 

IV. Key Debates and Controversies 
 

The rapid growth of AI in fluid dynamics has been accompanied by a number of technical and 
philosophical debates that are central to the field's maturation. These discussions address 
fundamental questions about model robustness, interpretability, and the role of data. 

 

Debate Conflicting Viewpoints 



Generalization vs. 
Specificity 

Hybrid Models: 
Proponents argue that 
models that incorporate 
physics can generalize to 
different forcing functions 
and Reynolds numbers 
outside of the training 
data.2 This is because the 
underlying physical laws 
provide a robust framework 
that extends beyond the 
training distribution. 

 
 
Pure ML Models: 
Detractors note that purely 
data-driven "black-box" 
models, which lack physics 
constraints, often fail to 
generalize. They perform 
poorly on unseen data and 
cannot enforce 
fundamental laws like 
conservation of 
momentum, as their "logic" 
is entirely dependent on 
the training data and they 
have no inherent ability to 
extrapolate.2 

The Black Box Problem & 
Interpretability 

Interpretability: This 
viewpoint asserts that 
models must be physically 
interpretable to be 
trustworthy for critical 
engineering applications.5 
A lack of understanding of 
the underlying physical 
reasons for a prediction is 
a major hurdle to adoption, 
especially in safety-critical 
domains. This has spurred 
the development of 
Explainable AI (XAI) 
methods to link model 
predictions to physical 
features.4 

 

 

Performance: This 
perspective prioritizes 
speed and accuracy over 
physical interpretation.21 
For some problems, the 
utility of the model's output 
(e.g., reduced drag) is more 
important than 
understanding the inner 
workings of the complex 
neural network that 
produced it.21 The 
complexity of deep 
learning can make 
interpretability difficult, and 
forcing it can sometimes 
reduce model 
performance.5 

PINNs vs. Traditional CFD PINNs: Proponents argue 
that PINNs are a viable 
alternative to classical 

 

 

Traditional CFD: Detractors 



methods, especially on 
future hardware, as they 
can directly solve PDEs.13 
The discovery of fluid 
singularities with PINNs 
demonstrates their unique 
ability to solve problems 
that have long resisted 
traditional methods.12 

argue that PINNs may fail in 
complex physical 
phenomena like turbulence 
compared to traditional 
numerical methods.5 They 
note that PINNs can take 
much longer to "converge" 
and that the calculated 
weights are only valid for 
that specific domain and 
boundary conditions, 
lacking the concept of 
generalization or inference 
that is critical for 
engineering use cases.21 

 

4.1 Generalization vs. Specificity 
 

The capacity of an AI model to perform well on data it has not been trained on—a property 
known as generalization—is a central point of contention.21 The provided research highlights a 
clear divide between "pure" machine learning models and "hybrid" approaches.2 Pure ML 
models that aim to replace an entire simulation can be extremely efficient but often exhibit 
poor generalization because they do not explicitly enforce physical constraints like 
conservation of mass and momentum.2 Their performance outside the specific distribution of 
their training data is often unpredictable and unreliable.21 This represents a significant 
limitation for engineering applications, where models must perform robustly under a wide 
range of operating conditions.2 In contrast, hybrid approaches that strategically integrate AI 
within a traditional physics-based framework are shown to be more stable and demonstrate 
robust generalization properties, even to different Reynolds numbers and forcing functions.2 
This suggests that a more nuanced, integrated approach is required to build models that are 
both fast and universally applicable. 

 

4.2 The Black Box Problem and the Need for Interpretability 
 

A significant hurdle to the widespread adoption of AI-augmented CFD is the "black box" 
nature of many deep learning models.5 In critical engineering applications, a prediction's 



physical basis is as important as the prediction itself, as engineers need to understand 

why a model behaves in a certain way to ensure safety and reliability.5 This lack of 
interpretability creates a trust deficit, preventing the models from moving beyond proofs of 
concept to become trusted industrial tools.11 To address this, the field is seeing a growing 
focus on Explainable AI (XAI).4 Methods such as additive-feature-attribution techniques are 
being developed to link the input features of a model to its predictions, providing a physically 
meaningful interpretation of the relationships it has learned from data.4 Furthermore, the 
recent demonstration that a large language model can develop physically interpretable 
turbulence models with clear reasoning suggests a path forward where AI is not just a black 
box but a collaborative partner in scientific discovery.17 

 

4.3 Data Requirements and Algorithmic Challenges 
 

The success of data-driven methods is fundamentally tied to the availability and quality of 
data, but this presents a paradox in fluid dynamics.5 For many biomedical and engineering 
problems, the data is not "massive," which poses limitations for training data-hungry models.5 
However, when dealing with turbulence, the sheer scale of high-fidelity simulations can 
generate so much data that issues of storage, retrieval, and post-processing become 
significant challenges.5 The data paradox also underscores a lack of standardization. The 
absence of high-fidelity, open databases for the scientific community hinders knowledge 
sharing and the development of common benchmarks for model evaluation.5 This highlights 
the need for a strategic approach to data, focusing not just on obtaining "more data," but on 
curating "smarter engineering data" that is relevant to the problem at hand.10 

 

V. Gaps in the Literature and Future Research 
Directions 
 

Despite the significant progress, several critical gaps remain in the literature, which serve as a 
roadmap for future research. 

 

5.1 Bridging the Gap from Theory to Practice 



 

Many of the AI models developed for fluid dynamics remain at the "proof-of-concept" stage.16 
While they have demonstrated remarkable capabilities on canonical problems, there is a 
persistent challenge in translating these promising results into robust, industrially scalable 
tools that can handle the complex geometries and operational variability of real-world 
applications.10 Future research must focus on the operational challenges of integrating AI 
models into existing engineering workflows, including issues of database management, 
feature engineering, and the coordination of different engineering groups.10 There is a critical 
need for more research focused on the scalability and reliability of these models in a diverse 
range of conditions. 

 

5.2 The Need for Standardized Datasets and Benchmarks 
 

A recurring theme in the provided literature is the scarcity of high-fidelity, open data, which 
limits the development of robust AI models and hinders progress in the field.5 To accelerate 
research and foster collaboration, a concerted effort is needed to create and maintain publicly 
available databases that are representative of a wide range of flow scenarios, including 
complex geometries and multi-directional forces.5 The creation of such standardized datasets 
would allow for fair and reproducible comparisons between different AI methodologies, 
establishing clear benchmarks for model performance and generalizability.5 

 

5.3 Advancing Physics-Constrained and Explainable AI 
 

The debates around generalization and interpretability point to a clear direction for future 
work. Research should move beyond purely data-driven "black-box" models and focus on 
developing more advanced hybrid frameworks that are not only accurate and efficient but 
also physically consistent and interpretable.6 This includes the continued development of 
Physics-Informed Neural Networks (PINNs) to handle the complexities of turbulence and other 
nonlinear phenomena.5 Furthermore, the wider application of Explainable AI (XAI) methods is 
essential to make AI models more trustworthy and to provide deeper insights into the 
underlying physics of fluid flows.4 The goal is to develop models that can provide accurate 
data-derived physics-based equations, rather than relying on empirical relations.5 

 



5.4 The Role of Foundation Models and LLMs 
 

The recent breakthrough in using a large language model to reason about and propose novel 
turbulence models suggests a new and profound frontier for AI in fluid dynamics.17 This work 
indicates that AI is no longer limited to simply augmenting human capabilities but can act as 
an "equal partner" in scientific discovery, capable of performing complex, long-chain 
reasoning and hypothesis generation.17 Future research should explore how these foundation 
models can be leveraged for other grand challenges in fluid dynamics, such as creating 
self-learning simulations or autonomously discovering new physical laws. This represents a 
potential paradigm shift, moving the field from computer-assisted design to 
computer-assisted scientific discovery. 

 

VI. Conclusion 
 

The integration of artificial intelligence into fluid dynamics marks a transformative new era for 
a field that has long been constrained by computational limitations. This literature review has 
shown that AI is not a fleeting trend but a fundamental shift in methodology, evolving from 
early, utilitarian applications in surrogate modeling to a deeply integrated, physics-informed 
approach that is now tackling some of the discipline's most enduring challenges. The field has 
progressed from using AI as a tool to accelerate existing methods to leveraging it as a novel 
instrument for foundational scientific discovery, as evidenced by the breakthrough work on 
fluid singularities in the Navier-Stokes equations. 

Despite these remarkable advances, the field is at a transitional stage, grappling with critical 
debates concerning generalization, interpretability, and the operational challenges of moving 
from proof-of-concept models to scalable, industrial tools. The analysis highlights a clear 
consensus: future progress depends on a strategic move toward hybrid, physically-informed, 
and explainable AI models. The development of standardized, open datasets and the 
exploration of new AI paradigms, such as the use of large language models for scientific 
discovery, are essential to accelerating this progress. Ultimately, AI offers a new framework for 
overcoming the computational trade-offs of the past and opens up unprecedented 
opportunities for innovation in science and engineering. This review establishes a critical need 
for new research that bridges the gap between theoretical AI advancements and practical 
application, a challenge that is at the heart of the research undertaken in this thesis. 
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