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1. Introduction to Analog In-Memory Computing 
 

 

1.1 The Von Neumann Bottleneck and the Rise of In-Memory 
Computing 
 

The architecture of modern computers, which has been in place for more than 70 years, is 
based on the foundational principles of the von Neumann model. This model fundamentally 
separates the central processing unit (CPU) from its memory, with a data bus serving as the 
channel for communication between the two components [1, 2]. This design, while robust, has 
given rise to a critical limitation known as the von Neumann bottleneck, or the "memory wall" 1. 
This bottleneck is not a theoretical curiosity but a practical and increasingly severe constraint 
on performance and energy efficiency, particularly for data-intensive applications like large 
language models (LLMs) and other complex AI algorithms 1. 

In these applications, the constant, repeated transfer of vast amounts of data, such as neural 
network weights, activations, and key-value caches, back and forth between memory (DRAM) 
and the processor (CPU or GPU) becomes the primary limiting factor 1. This data movement is 
highly power-consuming and time-intensive [1, 4]. The escalating demands of modern 
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artificial intelligence (AI), machine learning (ML), and high-performance computing (HPC) for 
greater computational capacity and tighter system integration necessitate a new architectural 
paradigm [5, 6]. The impact of this bottleneck extends beyond raw performance, creating a 
cascade of challenges for resource-constrained edge devices. These include high power 
consumption that drastically reduces battery life, increased latency that hinders real-time 
decision-making, and the need for larger physical footprints and complex thermal 
management solutions [3, 6]. A direct consequence of these issues is a paradigm where much 
of the heavy AI workload is offloaded to the cloud, which inherently undermines the benefits 
of edge computing, such as privacy and low latency [6]. 

 

1.2 Defining Analog In-Memory Computing (AIMC) 
 

Analog In-Memory Computing (AIMC), also referred to as Compute-in-Memory (CIM) or 
Processing-in-Memory (PIM), is an architectural paradigm designed to overcome the von 
Neumann bottleneck by physically integrating computation directly within the memory itself 
[3, 6]. The core principle of AIMC is the execution of fundamental neural network operations, 
most notably matrix-vector multiplication (MVM), by leveraging the intrinsic physical laws of 
electronics [1, 7]. This is accomplished by storing neural network weights directly within a 
dense, non-volatile memory (NVM) array, such as phase-change memory (PCM) or resistive 
random-access memory (RRAM), where individual memory elements function as tunable 
resistors [2, 7, 8]. 

The computational process unfolds by applying input data as a voltage on the memory array’s 
word lines. According to Ohm's law (V=IR), the current that flows through each memory 
element is proportional to the product of the input voltage and the stored resistance (weight) 
[1, 7]. The currents from a given column are then summed on the bit line, yielding the result of 
the MVM operation in accordance with Kirchhoff’s Current Law [1, 7]. This inherent parallelism, 
which allows hundreds of thousands of multiply-accumulate operations to occur 
simultaneously, dramatically reduces or eliminates the need for data movement, leading to 
significant improvements in energy efficiency and computational throughput [7, 9]. It is 
important to note that the term "AIMC" is used in other contexts, such as by the Acupuncture 
and Integrative Medicine College [10] and the Associazione Internazionale Mosaicisti 
Contemporanei [11], which are unrelated to the field of computer engineering. Similarly, 
academic papers on "AI-Generated Content" (AIGC) [12, 13] should not be confused with this 
topic. 

 

2. Historical Context and Foundational Principles 



 

 

2.1 Early Analog Computing and its Precursors 
 

The concept of using physical properties for computation is not a recent development but an 
ancient one, predating the digital era by centuries. Historical devices such as the Antikythera 
mechanism (c. 150-100 BC), an analog computer for astronomical calculations, and later 
inventions like the slide rule (c. 1620-1630) and the Differential Analyzer (1930s) developed by 
Vannevar Bush, served as important historical precursors to modern analog computing [14, 
15]. These early analog machines were often faster and more efficient for solving specific 
problems, such as differential equations, than their early digital counterparts [16]. However, 
the trajectory of computing changed with the rise of digital computers, which began to 
dominate the landscape from the 1950s onward. The reasons for this shift were not simply a 
matter of raw speed but were rooted in the superior precision, programmability, and versatility 
inherent in digital systems [16]. This historical progression, where digital approximation 
eventually overtook continuous analog calculation, is essential for understanding the ongoing 
debates and challenges of modern AIMC, particularly regarding the trade-offs between 
precision and efficiency. 

 

2.2 The Evolution of Memory Technologies for In-Memory Computing 
 

The modern resurgence of analog computing for AI is inextricably linked to the development 
and maturation of specific memory technologies [17]. The history of computer memory, from 
early drum memory [18, 19] and magnetic core memory [18, 19] to modern semiconductor 
memory like DRAM and SRAM, demonstrates a continuous drive toward higher density, lower 
cost, and faster access [18, 19]. However, for AIMC to be effective, a new class of memory was 
required: non-volatile memories (NVMs) that could not only store data without power but also 
retain multiple, continuously tunable states to represent the analog-like values of neural 
network weights [2, 17, 20]. 

Key memory technologies that have enabled the AIMC paradigm include: 

●​ Phase-Change Memory (PCM): At the heart of several IBM analog AI chips, PCM stores 
data by reversibly changing the physical state of a chalcogenide glass between 
amorphous (high resistance) and crystalline (low resistance) states [2, 4, 20]. This 
continuous range of resistance can be used to represent the synaptic weights of a neural 
network [2]. 



●​ Resistive RAM (RRAM/ReRAM): This technology works by generating conductive 
filaments or "defects" in an insulating material, which in turn changes its resistance [17, 
20]. RRAM is recognized for its scalability, fast read/write speeds, and low write energy, 
making it a promising candidate for neuromorphic and in-memory computing 
applications [17]. 

●​ Memristors: First conceptualized as the fourth fundamental circuit element by Leon 
Chua in 1971, memristors are a class of resistive memory that retains a state of resistance 
based on the history of voltage and current passed through them [21, 22]. Their physical 
realization by HP Labs in 2008 [22] has been at the core of new breakthroughs in AIMC 
[8, 23]. 

The journey from the theoretical memristor to a commercially viable system-on-a-chip (SoC) 
demonstrates a critical narrative of engineering problem-solving [8, 21]. Early research had to 
overcome practical challenges such as "sneak path" currents by adopting a 
one-transistor-one-resistor (1T1R) structure 8. Subsequently, the challenge shifted to 
eliminating off-chip bottlenecks by integrating all components, including peripheral circuits, 
onto a single SoC 8. This continuous process of tackling cascading engineering problems has 
paved the way for the practical realization of this technology. 

 

2.3 Core Principles of Analog Matrix-Vector Multiplication 
 

The central operation in many AI and ML models is matrix-vector multiplication (MVM), which 
is a key strength of AIMC [1, 7, 9]. The process within an analog memory array can be broken 
down into a series of steps: 

1.​ Weight Storage: The synaptic weights of a neural network are programmed and stored 
as the conductive states (resistances) of a crossbar array of NVM devices [7]. 

2.​ Input Modulation: The input vector of activations is converted from the digital domain 
into a series of analog voltage signals. This is typically achieved using digital-to-analog 
converters (DACs) that modulate the voltage on the word lines of the array [9]. 

3.​ Parallel Computation: For each row in the array, the voltage on the word line passes 
through the NVM devices (representing the weights), producing a current proportional to 
their product, as defined by Ohm’s law [1, 7]. 

4.​ Current Summation: The currents from each column of the array are summed on the bit 
line, yielding the result of the MVM operation, as defined by Kirchhoff’s law [1, 7]. 

5.​ Output Conversion: The resulting analog current on the bit line is then converted back 
to a digital value using an analog-to-digital converter (ADC) [9]. 

This process allows for a massive number of multiply-accumulate operations to occur in 
parallel directly at the location of the data [7, 9]. The elimination of data movement for weights 



results in extremely high energy efficiency, outperforming state-of-the-art digital compute 
arrays by a wide margin [9]. 

 

3. Key Research Themes and Breakthroughs 
 

 

3.1 AIMC for AI/ML Inference and Training 
 

A primary theme in the literature is the application of AIMC to AI and ML workloads, 
specifically for both inference and training [2]. Inference, which involves using a pre-trained 
model to make predictions, is particularly well-suited for AIMC due to the static nature of the 
model weights [2, 4]. The IBM Research group, for example, has explored using resistive 
random-access memory (RRAM) and electrochemical random-access memory (ECRAM) for 
training purposes, while leveraging phase-change memory (PCM) for inference [2]. While the 
complexities of continuously updating weights in analog devices present challenges for 
on-device training, most research has focused on accelerating inference at the edge, where 
extreme energy efficiency is a paramount requirement [6]. 

 

3.2 Advancements in Memristor and Non-Volatile Memory (NVM) 
Architectures 
 

Recent breakthroughs have extended the capabilities of AIMC far beyond its foundational role 
of accelerating linear operations. A landmark study from a team at Peking University, 
published in Nature Electronics, demonstrated a memristor-based hardware system capable 
of tackling complex, nonlinear sorting tasks without the need for traditional comparators 23. 
This "comparator-free" design, which employs a novel Digit Read mechanism and a Tree Node 
Skipping (TNS) algorithm, achieved remarkable performance gains, including a 7.7x increase in 
speed and a 160.4x improvement in energy efficiency compared to leading ASIC-based 
sorters 23. This finding is significant because it validates AIMC's versatility for a wider range of 
high-complexity, nonlinear tasks, moving it beyond its traditional focus on linear MVM. 

Another significant advancement is the development of fully integrated systems-on-a-chip 
(SoCs) 8. The startup TetraMem Inc., building on over a decade of academic research, has 



released a memristive SoC (the MX100) that integrates multiple computing cores with a 
RISC-V CPU 8. This product represents a major milestone in the field, as it bridges the gap 
between cutting-edge academic research and the practical, scalable deployment of AI 
hardware. This development addresses the engineering challenges of integrating on-chip 
peripheral circuits and eliminating off-chip bottlenecks, which had previously limited overall 
system latency and energy efficiency 8. 

 

3.3 Pushing the Boundaries: AIMC for Transformer and MoE Models 
 

A central and active theme in modern AIMC research is its application to large, 
state-of-the-art models that have come to define modern AI. The work from IBM Research 
has been pivotal in this area [1, 4]. 

A paper featured on the cover of Nature Computational Science, with lead author Julian 
Büchel, demonstrated a unique 3D AIMC architecture specifically designed for Mixture of 
Experts (MoE) models 4. This research showed how each "expert" in an MoE network layer can 
be mapped onto a distinct physical tier of a 3D non-volatile memory 4. Through numerical 
simulations, this 3D AIMC architecture was shown to achieve higher throughput, higher area 
efficiency, and higher energy efficiency when running MoE models compared to commercially 
available GPUs 4. 

The same research team also outlined the "first deployment of a transformer architecture on 
an analog in-memory computing chip" 4. This work, which appeared in Nature Machine 
Intelligence, performed within 2% accuracy of a floating-point computation on a benchmark 
called the Long Range Arena 4. This was a major breakthrough as it addressed the challenge 
of accelerating the attention mechanism, a key bottleneck for transformers 4. Since the values 
in the attention mechanism are dynamically changing, they would typically require constant, 
energy-intensive reprogramming of the NVM devices 4. To overcome this practical barrier, the 
researchers used a mathematical technique called "kernel approximation" to perform the 
necessary nonlinear functions on their experimental analog chip 4. This solution demonstrates 
a co-design approach, where algorithmic innovations are used to circumvent the physical 
limitations of the hardware. 

Table 3: Key AIMC Breakthroughs and Publications 

 

Publication/P
roject 

Authors/Team Core Findings Significance Relevant 
Sources 



Nature 
Computational 
Science MoE 
Paper 

Julian Büchel 
(Lead), IBM 
Research 

3D AIMC 
architecture 
outperforms 
GPUs for MoE 
models in 
throughput, 
area, and 
energy 
efficiency. 

Demonstrates 
viability of 
AIMC for 
large-scale, 
modern AI 
architectures. 

4 

Nature 
Machine 
Intelligence 
Transformer 
Paper 

IBM Research 
Team 

First 
deployment of 
a full 
transformer 
architecture 
on an AIMC 
chip, achieving 
~2% accuracy 
of FP 
operations. 

Overcomes 
the key 
challenge of 
accelerating 
dynamic 
transformer 
attention 
mechanisms. 

4 

Nature 
Electronics 
Memristor 
Sorting Paper 

Prof. Yang 
Yuchao's 
Team, Peking 
University 

First 
comparator-fr
ee, 
memristor-bas
ed system for 
complex, 
nonlinear 
sorting. 
Achieved 7.7x 
speed and 
160.4x energy 
efficiency 
gains. 

Proves AIMC 
can go beyond 
linear MVM to 
handle 
complex, 
nonlinear 
tasks. 

23 

"Analog 
Foundation 
Models" Paper 

IBM Research, 
ETH Zurich 

LLMs can be 
made robust 
to AIMC noise 
through 
hardware-awa
re training 

Addresses the 
fundamental 
concern of 
accuracy and 
non-determini
sm, proving 

1 



(HAT), 
competing 
with 4-bit 
quantized 
LLMs. 

AIMC's viability 
for high-stakes 
models. 

TetraMem 
MX100 SoC 

TetraMem Inc. First 
commercially 
available 
memristive 
SoC 
integrating 
multiple cores 
with a RISC-V 
CPU. 

A significant 
milestone 
bridging the 
gap from 
academic 
research to 
practical 
commercial 
deployment. 

8 

 

4. Critical Analysis of Conflicting Viewpoints and 
Debates 
 

 

4.1 The Great Divide: Analog vs. Digital In-Memory Computing 
 

The debate between analog and digital in-memory computing represents a central point of 
contention and a key architectural divide in the field 24. Digital IMC employs all-digital circuits, 
typically using SRAM as the memory device, to perform bit-by-bit product-accumulation 
operations directly within the memory array 24. This approach provides high performance, 
strong noise immunity, and high robustness and reliability 24. However, these benefits come at 
the cost of relatively large area and high power consumption overheads 24. 

In contrast, AIMC, by leveraging non-volatile memory technologies and the physical laws of 
electronics, achieves unparalleled energy efficiency, high storage density, and a smaller 
physical footprint 24. The trade-off is a fundamental one: analog computations are inherently 
noisy and non-deterministic, resulting in lower precision [1, 6, 24]. This core trade-off between 
precision and efficiency has led to the emergence of two distinct architectural paths. Digital 
IMC is better suited for high-precision, power-insensitive scenarios, such as large-scale 



cloud-based AI, while AIMC is more viable for energy-efficient, low-power applications at the 
edge where high accuracy is not a strict requirement 24. This practical engineering choice 
mirrors a broader philosophical debate about whether digital systems can ever perfectly 
replicate the continuous nature of the analog world [16], a debate which finds a new, practical 
expression in the design of next-generation AI accelerators. 

Table 2: Comparison of Analog vs. Digital In-Memory Computing 

 

Feature Analog In-Memory 
Computing 

Digital In-Memory 
Computing 

Primary Advantage High energy efficiency, high 
parallelism 

High precision, strong 
noise immunity 

Primary Disadvantage Lower precision, 
non-idealities 

Higher area and power 
overheads 

Typical Memory Medium NVM (e.g., PCM, RRAM) SRAM 

Ideal Application Low-power edge AI, 
inference 

High-precision cloud AI, 
high-performance 
computing 

Relevant Sources 1 24 

 

4.2 The Precision-Efficiency Trade-off and Solutions 
 

The inherent lack of precision and accuracy in analog computation due to noise, non-ideal 
device characteristics, and device-to-device variability is arguably the biggest challenge for 
the widespread adoption of AIMC [1, 6]. However, the literature indicates that this is not an 
insurmountable problem but rather a design challenge that can be mitigated through 
innovative co-design of hardware and software. A key solution is the use of "hardware-aware 
training" (HAT) [1, 6]. This technique involves training models on synthetic data while 
simultaneously using methods to enhance the model's robustness to the noise present in 
AIMC hardware 1. A paper by IBM Research and ETH Zurich, titled "Analog Foundation 
Models," demonstrated that through this process, they could achieve accuracy comparable to 
4-bit quantized LLMs 1. This finding proves that a symbiotic relationship between software 



algorithms and hardware design can effectively mitigate a primary hardware limitation. 

Furthermore, algorithmic workarounds can address other hardware constraints. For instance, 
the use of "kernel approximation" to perform the nonlinear functions required for transformer 
attention mechanisms is an example of a creative software solution to a hardware limitation 4. 
The ability to address these fundamental precision concerns through both architectural 
innovation and algorithmic co-design indicates that the problem is not being solved by 
brute-force hardware perfection alone but through an integrated, holistic approach to system 
design. 

 

5. Gaps in the Current Literature and Unresolved 
Challenges 
 

Despite the significant breakthroughs in academic research, several critical challenges 
remain, forming a substantial gap between proof-of-concept prototypes and widespread 
commercial adoption [3, 6]. 

 

5.1 Hardware Non-Idealities and Variability 
 

While hardware-aware training provides a viable path to mitigating noise, the underlying 
physical issues of non-ideal device characteristics and device-to-device variability still require 
significant research [6]. Mitigating these effects through circuit design and on-chip 
calibration techniques is an active area of research, but these solutions inevitably add to the 
complexity, area, and cost of the final hardware [6]. 

 

5.2 The Software and Toolchain Ecosystem Gap 
 

The software ecosystem for AIMC is critically underdeveloped [3, 6]. Traditional programming 
paradigms, compilers, and frameworks are meticulously optimized for the von Neumann 
architecture, creating a significant lack of standardized abstractions for novel AIMC hardware 
[3, 6]. This forces developers to use vendor-specific tools and frameworks, which increases 
development costs and creates "vendor lock-in," thereby hindering broader industry adoption 



[3]. 

 

5.3 Manufacturing Scalability and Cost Hurdles 
 

The fabrication of hybrid memory-processing elements requires specialized manufacturing 
processes that differ from conventional CMOS manufacturing [3]. This leads to lower yields 
and higher production costs, resulting in AIMC solutions commanding a premium of 40-60% 
over traditional computing architectures, which is a significant barrier to entry for many 
potential customers [3]. 

 

5.4 Lack of Standardization and Industry Fragmentation 
 

The AIMC industry is currently fragmented, with each solution operating within a proprietary 
ecosystem [3]. There is no clear consensus on hardware interfaces, programming models, or 
software development frameworks [3]. This fragmentation complicates integration into 
existing technology stacks and discourages significant investment from potential customers 
who are wary of committing to a single, non-standardized solution [3]. The challenges of 
manufacturing, standardization, and the software ecosystem are not isolated problems; 
rather, they form a circular, interdependent barrier to adoption. High costs limit the market 
size, which in turn stifles the development of open-source software and industry-wide 
standardization efforts. This lack of a robust ecosystem then further limits the market, 
creating a reinforcing negative feedback loop that is difficult to break without coordinated 
effort from both academic research and industry consortia. 

Table 1: Evolution of Computing Paradigms 

 

Paradigm Core Principle Time Period Key 
Limitation 

Relevant 
Sources 

Von Neumann Separate 
processing 
and memory 
units 

~1940s-Presen
t 

Von Neumann 
Bottleneck 
(data 
movement) 

1 



Early Analog 
Computing 

Physical 
properties 
used for 
continuous 
calculation 

Pre-1950s Precision, 
scalability, and 
versatility 

15 

Digital 
In-Memory 
Computing 

Digital logic 
integrated with 
memory 

~2010s-Prese
nt 

High 
area/power 
overhead 

24 

Analog 
In-Memory 
Computing 

Analog 
computation 
within 
non-volatile 
memory 

~2010s-Prese
nt 

Precision and 
noise 
sensitivity 

1 

 

6. Future Research Directions and Outlook 
 

 

6.1 Suggestions for Future Research 
 

The literature review reveals several promising avenues for future research to address the 
identified gaps and move the technology toward broader commercialization. 

●​ Hybrid Analog-Digital Architectures: A central direction is the development of 
heterogeneous computing systems that combine the energy efficiency of analog cores 
with the precision and flexibility of traditional digital compute units [3, 4, 6]. This 
approach would allow different computational tasks to be dynamically assigned to the 
most appropriate processing substrate within a single system [3]. 

●​ Standardized Software Ecosystems: Research is urgently needed to develop 
open-source compilers, programming models, and frameworks that can abstract 
hardware complexities and enable seamless integration of AIMC with existing technology 
stacks [3]. 

●​ On-Device Training and Adaptability: While AIMC excels at inference, efficient 
on-device training or continuous learning remains a challenge due to the complexity of 
updating analog weights [6]. Future work should explore hybrid solutions where 



fine-tuning occurs on the device, or entirely new methods for on-chip learning [6]. 

 

6.2 The Long-Term Vision: Hybrid and Heterogeneous Architectures 
 

The long-term vision for in-memory computing is not to replace digital computing but to 
create a new computational paradigm where different tasks are dynamically assigned to the 
most suitable computing substrate [3]. This fully integrated, heterogeneous system, where 
traditional CPUs and GPUs work in concert with various forms of in-memory processors, 
promises to deliver unprecedented performance and energy efficiency [3]. Such an 
architectural evolution would be foundational to the next generation of computing 
applications, from resource-constrained edge devices to massive data centers, as it moves 
beyond the physical and economic limits of traditional hardware scaling [3]. 

 

7. Conclusion 
 

Analog In-Memory Computing represents a paradigm shift poised to address the critical 
limitations of the von Neumann architecture in the era of data-intensive AI. While the core 
principles draw from the long history of analog computing and the evolution of non-volatile 
memory technologies, recent breakthroughs have validated its viability for complex 
workloads. These include the development of novel architectures for transformers and MoE 
models 4, the use of clever algorithmic workarounds to address dynamic tasks 4, and the 
application of hardware-aware training to mitigate the fundamental challenge of noise and 
precision 1. Furthermore, breakthroughs in memristor-based hardware have proven that AIMC 
can handle nonlinear and high-complexity tasks beyond basic MVM 23. 

Despite these advancements, significant challenges persist. The lack of standardized 
programming models and a mature software ecosystem, coupled with manufacturing hurdles 
and a fragmented industry, form a critical gap between academic proof-of-concept and 
widespread commercial adoption [3]. Future research is steering toward the development of 
hybrid architectures that combine the strengths of both analog and digital computing [4, 6], 
the creation of open-source software toolchains, and the exploration of new methods for 
on-device learning [6]. The ultimate success of AIMC will depend on its ability to transcend its 
current role as a specialized accelerator and evolve into a foundational component of a new, 
heterogeneous computing landscape that can deliver the performance and energy efficiency 
required for the next generation of AI applications. 
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