

A Critical Review and Taxonomy of Flawed Proofs for the Navier-Stokes Existence and Smoothness Problem

Chapter 1: The Millennium Prize Problem and Its Mathematical Foundations

1.1 Defining the Navier-Stokes Equations: From Physical Principles to Partial Differential Equations

The Navier-Stokes (NS) equations are a foundational set of partial differential equations that describe the motion of viscous fluid substances, such as water and air.¹ Their development represents a significant advancement in the field of fluid dynamics, moving from the theoretical description of idealized fluids to a more physically accurate model.² The historical lineage of these equations traces back to Leonhard Euler, who formulated equations for "ideal fluids" that lacked friction or viscosity.² In the 19th century, this framework was refined by Claude-Louis Navier (1822) and George Gabriel Stokes (1842-1850), who independently introduced the concept of viscosity—the internal friction of a fluid—into the equations of motion.¹ This inclusion was a conceptual leap that expanded their applicability to real-world phenomena, forming the basis of modern fluid mechanics.²

At their core, the Navier-Stokes equations are a mathematical expression of Isaac Newton's second law of motion, which states that force equals mass multiplied by acceleration ($F=ma$).² When applied to a fluid, this law is formulated for a continuous medium rather than a collection of discrete particles, making the equations a central component of continuum mechanics.² The system models the forces acting on a fluid element as a sum of contributions from pressure, viscous stress (friction), and any external body forces acting on the fluid.² The system of equations is typically supplemented by an additional equation, the continuity

equation, which describes the conservation of mass.² For the simplified case of an incompressible fluid—a common assumption in the context of the Millennium Prize problem—the continuity equation implies that the fluid's mass and density are constant, meaning the velocity field is "divergence-free" or "solenoidal".²

A central source of the mathematical difficulty in solving these equations is the nonlinear convective acceleration term, $(u \cdot \nabla)u$, which accounts for the acceleration of a fluid parcel with respect to space.¹ Unlike classical mechanics, where solutions are often particle trajectories, the solution to the Navier-Stokes equations is a vector field that describes the fluid's velocity at every point in space and at every moment in time.¹ This nonlinearity means the equations cannot be solved using traditional linear techniques and necessitates more advanced methods.³ The physical realism of the Navier-Stokes model, which accounts for viscosity, comes at the cost of the mathematical integrability found in the simpler Euler equations, highlighting a fundamental tension between physical accuracy and mathematical structure that is at the heart of this problem.¹

1.2 The Clay Millennium Problem: A Formal Statement of the Existence and Smoothness Conjecture

Despite their wide-ranging utility in fields from meteorology and aeronautics to blood flow analysis, a complete theoretical understanding of the solutions to the Navier-Stokes equations remains elusive.¹ This gap in knowledge led the Clay Mathematics Institute to name the "Navier-Stokes Existence and Smoothness" problem as one of its seven Millennium Prize Problems, offering a US\$1 million prize for a solution or a counterexample.¹

The problem, as formally stated, asks for a proof or a counterexample to the following proposition: In three spatial dimensions and time, given an initial velocity field and an external force field that are both "nice" (smooth, divergence-free, and decaying at infinity), does a corresponding velocity and pressure field exist that are also "smooth and globally defined" for all time?³

A thorough understanding of this problem requires a precise definition of its key terms:

- **Existence:** A solution must exist for all time ($t \geq 0$).⁵ This contrasts with solutions that may only exist for a finite "blow-up time," where some quantity (such as velocity) becomes infinite.⁵
- **Smoothness (Regularity):** The solution must be infinitely differentiable and bounded at all points in the domain.¹ The problem asks whether the fluid's motion, even if it becomes turbulent, remains "well-behaved" without developing infinitely sharp gradients or

discontinuities.³

- **"Nice" Initial Conditions:** The problem specifies conditions on the initial velocity field $u_0(x)$ and external force $f(x,t)$, which must be smooth, divergence-free, and satisfy certain decay conditions as the spatial variable $|x|$ approaches infinity.⁵ The problem is also posed in a periodic framework, which helps to rule out issues that may arise at infinity.³

This formal statement clarifies that the problem is not about finding a single solution but about proving a general, universal property of all solutions under physically reasonable conditions.⁷ The difficulty is to prove that a smooth solution

always exists, or to find a single counterexample where a singularity forms.³

1.3 The Conceptual Landscape: Differentiating Classical, Weak, and Regular Solutions

A critical aspect of understanding the Navier-Stokes problem is the distinction between different types of solutions that the mathematical community has defined to make progress on the problem. A **classical solution** is a function that satisfies the partial differential equations at every point in the domain.⁹ The Millennium Prize Problem is a question of whether such classical solutions always exist for the 3D incompressible Navier-Stokes equations.⁹

However, the nonlinear complexity of the equations makes it difficult to prove the existence of a classical solution for all time. This led to a major intellectual development in the 1930s with the introduction of **weak solutions** by Jean Leray.⁵ A weak solution is one that does not necessarily satisfy the equations at every point but does so in an "averaged sense".⁵ This is achieved by integrating the equations against a smooth "test function" and performing integration by parts.⁵ The benefit of this approach is that it requires less regularity on the solution itself, opening the door for powerful tools from functional analysis to be applied.¹³

Leray's work was a landmark achievement, as he proved that weak solutions to the 3D incompressible Navier-Stokes equations always exist for all time, a concept known as "global existence".⁵ This accomplishment, however, did not solve the Millennium Problem because it left open two critical questions: uniqueness and smoothness.⁵ The central dilemma is whether these weak solutions are, in fact, always classical (i.e., infinitely differentiable) and whether they are unique, or whether multiple different fluid motions could arise from the same initial conditions.³ The Clay problem is, in essence, the conjecture that for the three-dimensional Navier-Stokes equations, any weak solution is also a smooth, classical solution.⁵ This

intellectual move from a point-wise to an averaged approach to finding solutions demonstrates how the language and scope of mathematics evolve in response to problems that defy conventional analysis. The very existence of weak solutions represents a profound re-framing of the problem, allowing for a form of progress even while the central question of regularity remains unanswered.¹³

Chapter 2: Case Studies in Unsuccessful Proofs

The history of attempts to solve the Navier-Stokes existence and smoothness problem is marked by a series of high-profile claims that were ultimately found to be flawed. These attempts, while unsuccessful, have played a crucial role in shaping the field by revealing common pitfalls, refining the understanding of the problem's core difficulties, and demonstrating the intellectual honesty and rigor of the mathematical community. The rapid debunking of these proofs highlights the value of a decentralized, community-driven form of peer review that has emerged in the digital age.

2.1 The Mukhtarbay Otelbaev Attempt (2013): An Analysis of Rapid Peer Review and Identified Errors

In 2013, Mukhtarbay Otelbaev, a respected Kazakh mathematician, published a paper titled *Existence of a strong solution of the Navier-Stokes equations*, which claimed to solve the Millennium Problem.¹⁷ While the paper was in Russian and published in a less-renowned domestic journal, word of the claim spread rapidly, initiating an immediate, informal peer review on public platforms like Math Stack Exchange.¹⁷

The scrutiny from the online community was swift and detailed. Initial inquiries focused on whether Otelbaev's work addressed the precise formulation of the Clay problem, which specifies a finite domain and a lack of external forces.¹⁸ Otelbaev's paper proved the result for a system with an external force in an L2 space, which is not sufficient to establish the smoothness required by the Millennium Prize.¹⁸ The most damning critiques, however, were aimed at the core of the proof itself. Experts noted specific errors in formulas and logical steps.¹⁷ A more profound issue was a failure to establish a crucial a priori bound—a uniform, time-independent constraint on a "critical norm" of the solution.⁸ Without this bound, any claim of a solution's global existence would collapse.⁸ Critics concluded that the argument stopped at the standard local theory, never actually reaching the point where the Millennium

Problem begins.⁸

This episode demonstrates a significant shift in academic communication. Instead of waiting for a slow, months-long formal peer review process, the global community of mathematicians was able to scrutinize the work in real-time. This accelerated vetting process, while not a replacement for formal review, acts as a powerful public filter that quickly identifies logical inconsistencies and conceptual red flags.⁸

2.2 The Penny Smith Paper (2006): A Study in Public Scrutiny and Professional Response

Another notable case is the 2006 paper by Penny Smith, a mathematician at Lehigh University, which was posted on the arXiv preprint server.¹⁹ The paper, titled

Immortal Smooth Solution of the Three Space Dimensional Navier-Stokes System, garnered significant media attention after being highlighted on a prominent mathematics blog.¹⁹

The public discussion that followed on the blog's comments section was a mix of initial hope, skepticism from "unnamed sources," and direct engagement from Smith herself.¹⁹ A key point of confusion for many was whether the proof was "constructive," meaning it could be used for computational simulations.¹⁹ Smith clarified that her work was an existence theorem, not a constructive one, which helped to dispel some of the initial critiques.¹⁹ The core mathematical issues, however, centered on whether her approach—which involved approximating the Navier-Stokes equations by certain hyperbolic equations—correctly passed regularity properties to the limit.⁸ Ultimately, a serious error was found that invalidated the proof, and Smith, in an act of profound intellectual honesty, voluntarily withdrew her paper from the arXiv.¹⁹

The case of Penny Smith is a testament to the scientific community's commitment to self-correction. By publicly engaging with critiques and, in the end, retracting her paper, Smith exemplified the professional ethic of admitting mistakes and moving on.²⁰ The episode highlights how a public, collaborative environment can both accelerate the verification process and encourage a level of transparency that is not always present in the traditional, private peer-review system.²⁰

2.3 A Survey of Other High-Profile Claims and Debunkings

The Otelbaev and Smith cases are not isolated incidents but rather representative examples of a common pattern. The community sentiment is that a new claimed solution to the Navier-Stokes problem is almost always debunked quickly, often within a few days.⁸ The recurring failures serve as a collective signal that the problem's difficulty is not merely technical but is intrinsic to its mathematical structure.

Common errors in other attempts range from simple typographical mistakes¹⁷ to more fundamental logical fallacies or a misinterpretation of the problem's statement.¹⁸ Some attempts have been made to solve aspects of the problem using computational fluid dynamics (CFD), only for researchers to find that their numerical simulations contain errors or that their models are based on flawed assumptions.²² The history of failed proofs demonstrates a constant process of refinement, where each misstep sheds light on a new layer of the problem's complexity, guiding future research toward more fruitful avenues.

The following table summarizes some of the notable public attempts to prove the conjecture and the primary reasons for their failure, serving as a quick reference for the patterns of flawed reasoning.

Author	Year	Venue	Primary Claim	Primary Reason for Failure	Outcome
Mukhtarbay Otelbaev	2013	Local Journal	Existence of a strong solution.	The proof relied on estimates that were insufficient to guarantee smoothness and failed to bridge the "local to global" gap.	Not accepted by the broader community.
Penny Smith	2006	arXiv	Existence of a smooth, immortal	A serious error was found that invalidated	Voluntarily retracted by the

			solution.	the core of the proof.	author.
Various	Ongoing	arXiv, forums	Proofs of existence or regularity for specific cases.	Common issues include misinterpretation of the Clay problem, reliance on insufficient norms, or logical inconsistencies.	Debunked rapidly by the academic community.

Chapter 3: A Taxonomy of Common Mathematical Fallacies

The history of failed attempts to prove the Navier-Stokes existence and smoothness problem is not a simple chronicle of mistakes but a structured record of intellectual pitfalls. These recurring errors and conceptual misunderstandings have created a shared, if painful, understanding of the problem's intrinsic difficulties. Analyzing them reveals that the challenge is not just computational but is rooted in the very structure of the equations themselves.

3.1 The A Priori Bound Problem: Failing to Control Solutions for All Time

A fundamental concept in the study of partial differential equations is the **a priori bound**—a quantitative constraint on a solution's behavior that is known before the solution itself is found.¹³ Proving that a solution to the Navier-Stokes equations is smooth for all time requires demonstrating that some measure of its magnitude or derivatives does not become infinitely

large in a finite time.⁵ A

blow-up event, in this context, is a singularity where a solution or its derivatives go to infinity at a finite point in time.⁶

A common fallacy in attempted proofs is to confuse local existence with global existence.⁸ It is well-known that for "nice" initial conditions, a smooth solution exists for a short period of time.⁸ The central challenge of the Millennium Problem is to prove that this solution can be extended for all time without blowing up.⁵ For example, a key critique of Otelbaev's work was that his proof did not provide a rigorous way to extend his local solutions to solutions for all time.⁸ He "sweep[s] under the rug" this crucial step, which is where the real difficulty of the problem lies.⁸ The failure to establish a time-uniform bound on a critical norm of the solution is a fatal error that many proofs have fallen victim to, as it is the very essence of the problem to demonstrate that no such blow-up can occur.⁸

3.2 The "Scaling Gap" and Supercritical Norms: A Fundamental Obstacle

Perhaps the most profound and persistent obstacle in the Navier-Stokes problem is the "scaling gap" or "supercriticality".⁸ This concept describes a fundamental mismatch between the mathematical tools available and the behavior of the equations. In simple terms, as one "zooms in" on the fluid's motion to smaller and smaller scales, the norms—or mathematical metrics used to measure the solution's properties—that can be controlled a priori are not strong enough to prevent the formation of a singularity.⁸

The problem's supercriticality means that the quantities we know are globally controlled, such as the total kinetic energy, are "weaker at controlling fine-scale behavior than controlling coarse-scale behavior".²⁵ This stands in stark contrast to other equations where the scaling is "critical," meaning that the control a researcher has over the solution remains consistent across all scales, effectively ruling out singularities.⁸ The scaling gap is the central "hard core" of the problem, and repeated failures to bridge it using traditional methods have led the community to believe that a solution will require a genuinely new, non-standard approach.⁸ Recent work, however, has begun to make progress in this area, achieving the first algebraic reduction of the scaling gap since the 1960s, a testament to the field's continuous evolution in the face of persistent difficulty.²⁴

3.3 Misinterpreting Weak Solutions: Uniqueness vs. Existence

Another common source of error is a misunderstanding of the implications of weak solutions. As established by Jean Leray, weak solutions to the 3D incompressible Navier-Stokes equations exist for all time.⁵ However, the existence of a weak solution does not imply that it is unique or that it is smooth.⁵

Some flawed proofs have attempted to leverage the existence of weak solutions to claim a solution to the Millennium Problem, but this approach overlooks the crucial distinction. The problem is not merely about finding a solution, but about proving that solutions with "nice" initial conditions remain smooth forever and are uniquely determined by those conditions.³ Recent, groundbreaking work has demonstrated that Leray weak solutions are, in fact, not unique under certain conditions, a finding that adds a new layer of complexity to the problem and invalidates any naive attempts to conflate the two concepts.¹¹ This discovery fundamentally alters the landscape of the problem, proving that the dynamics of a fluid, at a certain level of abstraction, can be inherently non-deterministic, or at least highly unstable.²⁹

3.4 Errors in Convergence and Assumptions

A significant number of failed proofs falter during the final steps of a common analytical strategy: constructing a sequence of approximate solutions and then taking a limit.⁸ While the approximate solutions may be well-behaved, a common error is to assume that the desired properties, such as regularity or smoothness, will "pass to the limit".⁸ For example, a critique of Penny Smith's paper pointed out that the argument relied on "weak convergence" and spent very little time on establishing why the regularity would pass on to the limit.⁸

Weak convergence, a concept from functional analysis, is insufficient to guarantee smoothness. The resulting limit may satisfy the equations in a weak sense, but it may contain discontinuities or singularities that would violate the smoothness condition of the Millennium Problem.⁸ This failure demonstrates that the tools that are powerful for proving existence can be inadequate for proving the more subtle and challenging property of regularity.

The following table serves as a structured taxonomy, categorizing key concepts and the ways they have been mishandled in failed proofs.

Term/Concept	Definition	Significance in the	Example of a
--------------	------------	---------------------	--------------

		NS Problem	Flawed Proof
A Priori Bound	A quantitative bound on a solution's properties that is independent of the solution itself and holds for all time.	Proving that a smooth solution exists for all time requires showing that its derivatives do not "blow up." This is done by establishing a global, time-uniform a priori bound.	The Otelbaev critique, which noted that his proof did not provide a λ -independent, time-uniform a priori bound on a critical norm, effectively invalidating his global-regularity claims. ⁸
Blow-Up	A finite-time event in a PDE where the solution or one of its derivatives becomes infinite.	The Millennium Problem is a binary question: do solutions always remain smooth (i.e., no blow-up) or can a counterexample with a blow-up be found? ⁵	Many failed proofs assume a blow-up cannot occur without providing a rigorous a priori bound to justify this assumption. ⁸
Regularity Gap	The difference in scaling between a regularity criterion (a property that is sufficient to rule out a singularity) and the known a priori bounds.	The Navier-Stokes equations are "supercritical," meaning known a priori bounds are not strong enough to prevent a singularity at small scales, which is the heart of the problem. ²⁴	Countless attempts, from both respected and amateur mathematicians, have failed to overcome this intrinsic property of the equations. ⁸
Weak vs. Classical Solution	A classical solution satisfies the PDE everywhere, while a weak solution satisfies it in an	The Millennium Problem is to prove that for the 3D incompressible case, a weak	Some flawed proofs have attempted to claim a solution to the Clay problem by

	<p>averaged sense. Leray proved the existence of global weak solutions.</p>	<p>solution is always a smooth, classical solution.⁵</p>	<p>simply proving the existence of a weak solution.¹⁸</p>
--	---	---	--

Chapter 4: The Fruits of Failure: How Missteps Illuminate the Path Forward

The history of flawed proofs for the Navier-Stokes existence and smoothness problem is not a simple narrative of repeated failure. Instead, it is a testament to the intellectual resilience of the mathematical community, where each misstep has illuminated a new path forward and led to a deeper, more nuanced understanding of the problem's profound complexity.

4.1 The Enduring Legacy of Leray: From Existence of Weak Solutions to Non-Uniqueness

Jean Leray's seminal 1934 paper, which proved the existence of global weak solutions for the 3D problem, has had a complicated and enduring legacy.⁵ For decades, the central question remained whether these solutions were unique and smooth. The failures of many proofs to bridge the gap between weak and classical solutions demonstrated that this was a far more difficult task than anticipated.¹³

However, these failures have recently led to a groundbreaking discovery. Using a modern technique called "convex integration," mathematicians have now demonstrated that Leray weak solutions for the forced Navier-Stokes equations are not unique under certain conditions.¹¹ This finding fundamentally changes the conceptual landscape of fluid dynamics. It suggests that a single set of initial conditions can, in a weak sense, lead to multiple possible fluid motions.²⁹ This counterintuitive result provides profound insight into the intrinsic instability of turbulent flows and opens up new avenues of research into the subtle properties of weak solutions, moving the focus from a simple binary question of "existence or non-existence" to a more complex exploration of the equations' hidden instabilities.¹⁴

4.2 The Finite-Time Singularity Debate and Its Geometric Analysis

A second line of inquiry, spurred by the difficulty of proving global existence, has been the search for a counterexample—a set of initial conditions that leads to a finite-time blow-up or singularity.³ While such a counterexample has yet to be found for the Navier-Stokes equations, progress on related "toy models" has been significant.

In a major breakthrough, a computer-assisted proof for the closely related Euler equations demonstrated that singularities can form in non-viscous fluids.³⁰ This work, while not directly a proof for Navier-Stokes, offers hope and a new conceptual framework for studying singularity formation.³⁰ The study of potential singularities has also led to the use of geometric and topological analysis to understand vortex dynamics.³¹ Researchers have studied how complex structures like vortex rings or trefoil knots evolve in time, revealing how the kinetic energy of the flow becomes concentrated in ever-smaller regions, a precursor to a potential blow-up.³¹ These studies have shown that even in the absence of a complete proof, the community has developed a rich and detailed picture of the geometric and analytical conditions that would be required for a singularity to form.

4.3 The Role of Computers: From Proofs-by-Exhaustion to Formal Verification

The persistent difficulty of the Navier-Stokes problem has also pushed the boundaries of what constitutes a "proof." Since the controversial computer-assisted proof of the Four-Color Theorem in 1976, there has been a debate within the mathematical community about whether proofs that are not verifiable by hand provide genuine "understanding".³⁰

However, the field has evolved. Today, computer-assisted proofs are not just about brute-force calculation; they are about using sophisticated tools like "validated numerics" and "interval arithmetic" to rigorously prove theorems that are too complex for human calculation.³⁴ The recent computer-assisted proof of singularity formation in the Euler equations is a major step forward in this area, demonstrating that these methods are capable of tackling problems of central importance in fluid dynamics.³⁰ The willingness to embrace this new approach is a direct result of the long history of failed proofs, which have shown that traditional, human-centric methods are often insufficient to overcome the intrinsic complexity of the equations.²⁵ These developments signal a strategic shift away from a singular, frontal assault on the problem to a flanking maneuver using new tools and related equations.

Chapter 5: The Researcher's Toolkit: A Multilingual Guide to Literature Discovery

Conducting a comprehensive literature review on the failed attempts to prove the Navier-Stokes equations requires a methodical and multi-pronged search strategy that extends beyond standard English-language databases. The following guide provides a practical framework for such a research endeavor.

5.1 Creating a Search Strategy: Major Databases and Digital Archives

A thorough search should begin with the most comprehensive mathematical databases. **MathSciNet** and **Zentralblatt MATH** are considered the essential research tools for mathematics, as they index and review literature from the 19th century to the present.³⁸ These services use a hierarchical classification system known as the

Mathematics Subject Classification (MSC) to categorize papers, which is a powerful tool for finding relevant work.³⁹ The most relevant MSC codes for this topic fall under

35XX (Partial Differential Equations) and **76XX (Fluid Mechanics)**, specifically 35Q30, 35Q35, and 76D09.¹⁵

The next crucial step is to search preprint archives, with **arXiv.org** being the most important.³⁸ Many of the high-profile, and ultimately flawed, proofs first appeared on arXiv, where they were subject to rapid public scrutiny before formal peer review.⁸ Searching this archive can provide a real-time record of the community's reaction to a new claim.⁸ Finally, citation indexing services like

Google Scholar and **Scopus** are invaluable for tracking the impact of a paper, particularly in finding later works that reference, critique, or debunk a flawed proof.³⁸ This is especially useful for finding errata and corrigenda.

5.2 Identifying Errata and Corrigenda in the Academic Record

The formal academic record of failed proofs and their corrections is maintained through publications known as **errata** and **corrigenda**.⁴⁵ A

corrigendum is a correction to an article that the original author wishes to publish, typically to fix a substantive error that compromises the paper's scientific accuracy.⁴⁵ An

erratum, on the other hand, is a correction for an error introduced by the journal during the editing or production process.⁴⁵

Searching for these formal notices is a key part of any comprehensive review. For example, a corrigendum was issued for a paper on the inviscid limit of compressible Navier-Stokes equations to correct a requirement that was erroneously stated at four points in the document.⁴⁷ Another corrigendum for a paper on the 2D Navier-Stokes equations noted that a lemma used in the proof was not true and provided a counterexample.⁴² The existence of these formal corrections demonstrates the subtle, often overlooked process of self-correction within the academic community, where a flawed proof does not simply disappear but becomes a documented part of the intellectual history of the problem.

The following table provides the necessary search terms for conducting a multilingual literature review, a crucial step for a truly comprehensive study of the problem's history.

English	German	Spanish	Russian
Navier-Stokes equations	Navier-Stokes-Gleichungen	Ecuaciones de Navier-Stokes	Уравнения Навье-Стокса
proof	Beweis	prueba	доказательство
failed proof	fehlgeschlagener Beweis	prueba fallida	неудачное доказательство
existence and smoothness	Existenz und Glattheit	existencia y suavidad	существование и гладкость
singularity	Singularität	singularidad	сингулярность
blow-up	Blow-up, Kollaps	explosión, colapso	взрыв, коллапс

literature review	Literaturrecherche	revisión de literatura	литературный обзор
corrigendum	Korrigendum	corrigendum	исправление
erratum	Erratum	errata	опечатки
counterexample	Gegenbeispiel	contraejemplo	контрпример

Chapter 6: Conclusion: A Problem of Profound Complexity and Enduring Fascination

The quest to prove or disprove the Navier-Stokes existence and smoothness problem is one of the great intellectual sagas of modern mathematics. The history of failed attempts is not a tale of incompetence but a nuanced record of the field's struggle with a problem of profound complexity. A critical review of this history reveals that the problem's enduring difficulty is not merely a technical challenge but an intrinsic property of the equations themselves, one that challenges the very limits of classical mathematical analysis.

The analysis of flawed proofs, from the rapid debunking of Otelbaev's claim to the public and transparent retraction by Penny Smith, highlights a pattern of recurring pitfalls: a failure to establish crucial a priori bounds, an inability to bridge the "local-to-global" gap, and a reliance on analytical tools that are rendered ineffective by the problem's "scaling gap".⁸ These failures have collectively taught the community that traditional methods are insufficient and that a solution will require a fundamental paradigm shift.

Crucially, these missteps have not led to a dead end. Instead, they have been a fertile ground for innovation and new discoveries. The failures have pointed to promising new research avenues, such as the exploration of the non-uniqueness of weak solutions and the use of computer-assisted proofs on related problems.¹¹ The recent, groundbreaking work that has achieved the first algebraic reduction of the scaling gap in decades is a testament to this progress, demonstrating that the community is beginning to make tangible gains on what was once considered an insurmountable barrier.²⁴

The dual existence of a slow, formal system of errata and a rapid, informal online discourse for vetting new claims speaks to the intellectual rigor and self-correcting nature of the field.⁸ The problem of Navier-Stokes is a meta-problem, one that forces a re-evaluation of what

constitutes a "proof" and what kind of tools are needed to describe the chaotic, yet structured, behavior of the physical world. The story of its failed proofs is, in the end, a compelling narrative of intellectual resilience, a constant search for truth where even "failure" is a powerful engine of discovery.

Works cited

1. Navier–Stokes equations – Wikipedia, accessed on September 9, 2025, https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
2. The Navier–Stokes Millennium Problem: An Examination of Existence, Smoothness, and the Fundamental Questions of Fluid Motion – Circular Astronomy, accessed on September 9, 2025, <https://circularastronomy.com/2025/09/07/the-navier-stokes-millennium-problem-an-examination-of-existence-smoothness-and-the-fundamental-questions-of-fluid-motion/>
3. Navier–Stokes existence and smoothness – Wikipedia, accessed on September 9, 2025, https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness
4. A Derivation of the Navier–Stokes Equations – Ball State University Libraries, accessed on September 9, 2025, https://digitalresearch.bsu.edu/mathexchange/wp-content/uploads/2021/02/A-Derivation-of-the-Navier-Stokes-Equations_coleman.neal_.pdf
5. existence and smoothness of the Navier–Stokes equations – Clay Mathematics Institute, accessed on September 9, 2025, <https://www.claymath.org/wp-content/uploads/2022/06/navierstokes.pdf>
6. soft question – Blow up of a solution – Mathematics Stack Exchange, accessed on September 9, 2025, <https://math.stackexchange.com/questions/2772/blow-up-of-a-solution>
7. Help me understand! Who decides that this Navier stokes equation is not solved correctly, if it has never been solved. : r/AskEngineers – Reddit, accessed on September 9, 2025, https://www.reddit.com/r/AskEngineers/comments/yo9o20/help_me_understand_who_decides_that_this_navier/
8. Claimed proof of the existence of smooth solutions to Navier–Stokes from a legitimate professional mathematician working in PDEs. : r/math – Reddit, accessed on September 9, 2025, https://www.reddit.com/r/math/comments/1ma0uxv/claimed_proof_of_the_existence_of_smooth/
9. On Weak Solutions and the Navier–Stokes Equations – ScholarWorks@UARK, accessed on September 9, 2025, https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1007&context=mascuh_t
10. LERAY-HOPF WEAK SOLUTIONS TO THE NAVIER-STOKES EQUATIONS Contents
1. Introduction: Physical derivation of incompressible model 1, accessed on

September 9, 2025,

<http://math.uchicago.edu/~may/REU2023/REUPapers/Lee,Michael.pdf>

11. Non-uniqueness of Leray solutions of the forced Navier-Stokes equations, accessed on September 9, 2025,
<https://annals.math.princeton.edu/2022/196-1/p03>
12. On Leray's Self-Similar Solutions of the Navier-Stokes Equations Satisfying Local Energy Estimates, accessed on September 9, 2025,
<https://personal.math.ubc.ca/~ttsai/publications/leray.pdf>
13. ON THE EXISTENCE OF LERAY-HOPF WEAK SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 1. Introduction Let $T > 0$ be an arbitrary finite - UNIPI, accessed on September 9, 2025,
<https://arpi.unipi.it/retrieve/e0d6c92f-c274-fcf8-e053-d805fe0aa794/TeachingLHSubmitted.pdf>
14. Non-uniqueness of Leray-Hopf weak solutions to the fractional Navier-Stokes equations, accessed on September 9, 2025,
<https://www.math.ias.edu/delellis/sites/math.ias.edu.delellis/files/Michele-Thesis.pdf>
15. stability of leray weak solutions to 3d navier-stokes equations, accessed on September 9, 2025, <https://ejde.math.txstate.edu/Volumes/2025/79/zhang.pdf>
16. Non uniqueness of Leray solutions of the ipodissipative Navier-Stokes equations - POLITesi - Politecnico di Milano, accessed on September 9, 2025,
https://www.politesi.polimi.it/retrieve/a81cb05c-649a-616b-e053-1605fe0a889a/2016_7_De_Rosa.pdf
17. analysis - Has Prof. Otelbaev shown existence of strong solutions for ..., accessed on September 9, 2025,
<https://math.stackexchange.com/questions/634890/has-prof-otelbaev-shown-existence-of-strong-solutions-for-navier-stokes-equatio>
18. Is the problem that Prof Otelbaev proved exactly the one stated by Clay Mathematics Institute?, accessed on September 9, 2025,
<https://math.stackexchange.com/questions/635530/is-the-problem-that-prof-otelbaev-proved-exactly-the-one-stated-by-clay-mathemat>
19. Navier-Stokes Equation Progress? | Not Even Wrong, accessed on September 9, 2025, <https://www.math.columbia.edu/~woit/wordpress/?p=470&cpage=1>
20. Navier Stokes: False Alarm - Good Math/Bad Math, accessed on September 9, 2025, <http://www.goodmath.org/blog/2006/10/09/navier-stokes-false-alarm/>
21. Navier-Stokes Equation Progress? | Not Even Wrong - Columbia Math Department, accessed on September 9, 2025,
<https://www.math.columbia.edu/~woit/wordpress/?p=470&cpage=3>
22. A Critical Review of the Numerical Solution of Navier-Stokes Equations. - DTIC, accessed on September 9, 2025, <https://apps.dtic.mil/sti/tr/pdf/ADA034123.pdf>
23. Verification of Euler / Navier-Stokes Codes using the Method of Manufactured Solutions - Kevin T. Crofton Department of Aerospace and Ocean Engineering, accessed on September 9, 2025,
https://www.aoe.vt.edu/content/dam/aoe_vt_edu/people/faculty/cjroy/Publications-Articles/IJNMF.final.2004.pdf

24. Geometry of turbulent dissipation and the Navier–Stokes regularity problem - PMC, accessed on September 9, 2025,
<https://PMC.ncbi.nlm.nih.gov/articles/PMC8065050/>
25. Why global regularity for Navier–Stokes is hard | What's new - Terence Tao - WordPress.com, accessed on September 9, 2025,
<https://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-hard/comment-page-6/>
26. An algebraic reduction of the 'scaling gap' in the Navier–Stokes regularity problem, accessed on September 9, 2025,
<https://www.pacm.princeton.edu/events/algebraic-reduction-scaling-gap-navier-stokes-regularity-problem>
27. An algebraic reduction of the 'scaling gap' in the Navier–Stokes regularity problem - arXiv, accessed on September 9, 2025, <https://arxiv.org/abs/1704.05546>
28. Remarks on the “Onsager Singularity Theorem” for Leray–Hopf Weak Solutions: The Hölder Continuous Case - MDPI, accessed on September 9, 2025,
<https://www.mdpi.com/2227-7390/11/4/1062>
29. Instability and non-uniqueness in the Navier–Stokes equations | Institute for Mathematics and its Applications | College of Science and Engineering - University of Minnesota, accessed on September 9, 2025,
<https://cse.umn.edu/ima/events/instability-and-non-uniqueness-navier-stokes-equations>
30. Computer Helps Prove Long-Sought Fluid Equation Singularity ..., accessed on September 9, 2025,
<https://www.quantamagazine.org/computer-helps-prove-long-sought-fluid-equation-singularity-20221116/>
31. Singularities in fluid mechanics | Phys. Rev. Fluids - Physical Review Link Manager, accessed on September 9, 2025,
<https://link.aps.org/doi/10.1103/PhysRevFluids.4.110502>
32. Enstrophy and circulation scaling for Navier–Stokes reconnection | Journal of Fluid Mechanics - Cambridge University Press & Assessment, accessed on September 9, 2025,
<https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/enstrophy-and-circulation-scaling-for-navierstokes-reconnection/36941B6CCCE97BE7DAF94758088284B8>
33. Singularities in Fluid Mechanics - DAMTP, accessed on September 9, 2025,
<http://www.damtp.cam.ac.uk/user/hkm2/PDFs/Moffatt2019d.pdf>
34. Computer-assisted proof - Wikipedia, accessed on September 9, 2025,
https://en.wikipedia.org/wiki/Computer-assisted_proof
35. Computational Mathematics in computer assisted proofs, accessed on September 9, 2025, <https://aimath.org/pastworkshops/comproofsrep.pdf>
36. Computer-assisted Existence Proofs for Navier–Stokes Equations on an Unbounded Strip with Obstacle - Publikationen in KITopen, accessed on September 9, 2025, <https://publikationen.bibliothek.kit.edu/1000150609>
37. Analytical and Computer-Assisted Proofs in Incompressible Fluids - ICMAT, accessed on September 9, 2025,

<https://www.icmat.es/Thesis/JGomezSerrano.pdf>

38. Math Databases - Mathematics Library - Cornell University, accessed on September 9, 2025, <https://mathematics.library.cornell.edu/databases/>
39. Mathematics Subject Classification - Wikipedia, accessed on September 9, 2025, https://en.wikipedia.org/wiki/Mathematics_Subject_Classification
40. Browse - EuDML, accessed on September 9, 2025, <https://eudml.org/subjects/MSC>
41. Vanishing Viscosity Limit of the Compressible Navier--Stokes Equations with General Pressure Law | SIAM Journal on Mathematical Analysis, accessed on September 9, 2025, <https://pubs.siam.org/doi/10.1137/18M1224362>
42. Corrigendum: Large Friction Limit and the Inviscid Limit of 2D Navier--Stokes Equations under Navier Friction Condition | SIAM Journal on Mathematical Analysis - SIAM.org, accessed on September 9, 2025, <https://pubs.siam.org/doi/10.1137/130904673>
43. Non-Smooth Solutions of the Navier-Stokes Equation - arXiv, accessed on September 9, 2025, <https://arxiv.org/html/2410.09261v5>
44. Large Friction Limit and the Inviscid Limit of 2D Navier–Stokes Equations Under Navier Friction Condition | SIAM Journal on Mathematical Analysis - SIAM.org, accessed on September 9, 2025, <https://pubs.siam.org/doi/10.1137/080725349>
45. Errata Retractions and Corrigenda Policy, accessed on September 9, 2025, <https://www.recentscientific.com/errata-retractions-and-corrigena-policy>
46. Errors and Corrections in Mathematics Literature, accessed on September 9, 2025, <https://ams.org/journals/notices/201304/rnoti-p418.pdf>
47. Corrigendum to “Inviscid limit of the compressible Navier–Stokes equations for asymptotically isothermal gases” [J. Differ. Equ. 269 (10) (2020) 8640–8685] - Loyola Marymount University, accessed on September 9, 2025, https://lmu.primo.exlibrisgroup.com/discovery/fulldisplay?docid=cdi_crossref_pri mary_10_1016_j_dde_2021_03_046&context=PC&vid=01LMU_INST:Hannon&lang=en&adaptor=Primo%20Central&tab=Everything&query=creator%2Cexact%2C%20Schrecker%2C%20Matthew%20R.I.%2CAND&mode=advanced&offset=0
48. Corrigendum: Large Friction Limit and the Inviscid Limit of 2D Navier--Stokes Equations under Navier Friction Condition - ResearchGate, accessed on September 9, 2025, https://www.researchgate.net/publication/394530403_Corrigendum_Large_Friction_Limit_and_the_Inviscid_Limit_of_2D_Navier--Stokes_Equations_under_Navier_Friction_Condition