

The Phase Behavior of Water in Low-Pressure Environments: A Comprehensive Literature Review

1. Introduction

1.1. The Unique Nature of Water and Its Thermodynamic Anomalies

Water is a substance of extraordinary scientific interest due to its anomalous physical and chemical properties, many of which are a direct consequence of its extensive hydrogen-bonding network.¹ Unlike most other liquids, water exhibits a density maximum at 4 °C at atmospheric pressure, and its solid phase (ice) is less dense than its liquid phase, causing ice to float. This unusual characteristic is reflected in the negative slope of its solid-liquid phase boundary on a pressure-temperature (

p-T) diagram, a behavior that deviates from the norm for the vast majority of substances.² These and other anomalies—including high specific heat capacity, high surface tension, and a complex array of amorphous and crystalline solid phases—make the study of water's phase transitions a rich and enduring area of inquiry.¹ A particular frontier of research involves understanding the behavior of water in low-pressure and vacuum conditions, where the absence of a confining atmosphere drastically alters the dynamics of its phase transitions.

1.2. Scope and Context of the Review

This literature review provides a detailed synthesis of the thermodynamic principles, experimental evidence, and theoretical frameworks that govern the phase transitions of water in low-pressure environments. The review is structured to first establish the foundational

thermodynamic context before exploring the macroscopic and microscopic phenomena that occur when liquid water is subjected to vacuum conditions. It will trace the evolution of research from foundational theoretical models to modern-day experimental techniques, highlighting major findings, key debates, and future research directions. The primary focus is on the paradoxical "boil-freeze" phenomenon, the theoretical debate surrounding the liquid-liquid phase transition, and the practical implications of water behavior in vacuum for fields as diverse as space science, industrial engineering, and materials research.

2. Foundational Thermodynamics of Water at Low Pressures

2.1. The Water Phase Diagram and the Triple Point

The pressure-temperature (p-T) phase diagram of water serves as the fundamental theoretical framework for understanding its phase behavior.² This diagram delineates the regions where water exists as a stable solid, liquid, or gas, as well as the lines where two phases can coexist in equilibrium. The most critical state point for the study of water in vacuum is the triple point, a unique condition of temperature and pressure where all three phases—solid ice, liquid water, and water vapor—can coexist in a stable equilibrium.⁴ For pure water in the absence of air, this point occurs at a temperature of 273.16 K (

0.01° C) and a partial vapor pressure of 611.657 Pa (approximately 0.006 atm).⁴ Below this pressure, liquid water cannot exist in a stable state. Any increase in temperature at a constant pressure below the triple point will cause ice to bypass the liquid phase and transition directly to vapor through the process of sublimation.³

Another critical state point is the critical point, where the liquid-gas boundary terminates and the two phases become indistinguishable, forming a supercritical fluid.² For water, this occurs at a temperature of 647.096 K and a pressure of 22.064 MPa.² While high-pressure phases are not the primary focus of this review, it is important to note that water exhibits a complex phase diagram with at least 15 known forms of ice, with various triple points for the coexistence of different solid and liquid phases at high pressures.¹

Table 1: Key Thermodynamic State Points of Water

State Point	Temperature (K)	Pressure (Pa)	Description
Triple Point	273.16	611.657	Stable coexistence of solid, liquid, and gas phases. ⁴
Normal Boiling Point	373.15	101,325	Boiling point at standard atmospheric pressure. ³
Critical Point	647.096	22.064×10^6	Temperature and pressure above which liquid and gas phases are indistinguishable. ²

2.2. The Significance of Water's Anomalous Properties at Low Pressure

The anomalous properties of water are central to its behavior in vacuum. The negative slope of the fusion curve on the p-T diagram means that, unlike most substances, increasing pressure on ice can cause it to melt.² This occurs because the liquid phase of water is denser than the solid phase, a molecular-level consequence of the extensive, open network of hydrogen bonds in the ice lattice.²

This foundational understanding provides a powerful, deterministic framework for predicting the macroscopic fate of a volume of water exposed to a vacuum. A sample of liquid water at room temperature and atmospheric pressure exists at a point far above and to the right of the triple point on the phase diagram. The act of "pulling a vacuum" corresponds to a rapid, near-vertical descent along a constant temperature line on this diagram. As the pressure drops below the boiling point curve—which is a function of pressure—the water must, by definition, begin to boil.⁵ This is the flash boiling phenomenon. However, this phase transition is an endothermic process that requires a significant latent heat of vaporization. This energy is drawn directly from the thermal energy of the remaining liquid, causing its temperature to drop precipitously. This temperature drop is represented by a rapid movement to the left on the phase diagram. The simultaneous and rapid drop in both pressure and temperature forces the system along a diagonal trajectory that will inevitably cross the liquid-solid boundary, causing the remaining liquid to freeze solid, often while still boiling.⁶ This trajectory perfectly explains the paradoxical "boil-freeze" outcome observed in both laboratory experiments and

in the context of space.

3. The Macroscopic Behavior of Water in a Vacuum: Evaporation, Boiling, and Freezing

3.1. The "Boil-Freeze" Phenomenon and its Mechanisms

The "boil-freeze" phenomenon is a classic demonstration of water's phase behavior in a vacuum. When a volume of liquid water is suddenly exposed to a low-pressure environment, such as a vacuum chamber or the vacuum of space, its boiling point drops dramatically, falling below its initial temperature.⁵ This causes the water to undergo explosive or "flash" boiling.⁶ This rapid vaporization is a highly endothermic process, drawing a large amount of energy from the remaining liquid as latent heat of vaporization.⁶ This evaporative cooling effect is so efficient that the temperature of the remaining water drops rapidly, often falling below its freezing point before all of the liquid can evaporate.⁸ The liquid then freezes solid, resulting in a state where a fraction of the original water has become a vapor and the remainder has transformed into ice. The subsequent fate of the ice is sublimation, a direct transition from solid to vapor, as the pressure remains below the triple point.³

3.2. Experimental Observations of Morphological Changes

This process has been visually documented in numerous studies and demonstrations. A seminal study by Cheng and Lin in 2007 investigated the morphological changes of water within a vacuum cooling system, providing a precise timeline of the process.⁹ Their experiments showed that as the pressure in the chamber was reduced, a series of distinct events occurred: the liquid water began to produce tiny bubbles after 115.2 s, which grew larger at 121.2 s, leading to rapid boiling at 126.7 s. After the boiling subsided, the water entered the freezing stage at 181.5 s. The final ice mass, observed after 480 s, was found to have a two-layered structure: an irregular, porous layer on top and a dense layer below.⁹ This morphology is a direct result of the rapid and inhomogeneous freezing driven by evaporative cooling.

The outcome of the boil-freeze phenomenon is not an absolute certainty, but rather a

function of the system's thermal dynamics. If the rate of heat removal by boiling is significantly faster than the rate of heat addition from the surrounding environment, the temperature will drop rapidly enough to cause freezing before complete evaporation.⁵ This is illustrated by a key distinction in laboratory experiments: a volume of water in a vacuum chamber with an insulating glass beaker is more likely to freeze than one in a conductive copper vessel, as the latter can more efficiently transfer ambient heat to the water, aiding the sublimation process after the initial freeze.⁶ Similarly, a small quantity of water exposed to the radiant heat of the sun in space may behave differently than a gallon in total shadow.⁵ The final state is thus a complex interplay of thermodynamic constants and external thermal variables.

Table 2: Seminal Experimental Investigations of Water's Macro-Behavior in Vacuum

Author(s) & Year	Study Title/Description	Core Findings	Significance/Contribution
Cheng and Lin (2007)	"The morphological visualization of the water in vacuum cooling and freezing process"	Documented the sequential stages of boiling, freezing, and sublimation with precise timings; Observed a two-layer ice structure: a porous top layer and a dense bottom layer. ⁹	Provided first-of-its-kind visual evidence for the "boil-freeze" paradox and its resulting morphological changes. ⁹
Faubel and Kisters (1980s)	Early microjet experimentation with liquid water in vacuum	Demonstrated the existence of a free vacuum surface on micrometer-sized liquid water jets, showing collisionless propagation of evaporating molecules with a Maxwellian velocity distribution for jet diameters below 10	Pioneered a novel experimental method to study volatile liquids in high vacuum, overcoming the problem of instant freezing and evaporation. ¹⁰

		μm. ¹⁰	
Neil (2010s)	HVAC evacuation experiments	Demonstrated that a fast, deep vacuum pull can freeze a small amount of water in an HVAC system, which then hinders evacuation. ⁶	Connected the theoretical "boil-freeze" phenomenon to a practical, real-world engineering problem, confirming its significance outside of a laboratory setting. ⁶

4. The Microscopic and Theoretical Perspectives: The Liquid-Liquid Transition

4.1. The LLPT Hypothesis and Water Anomalies

The perplexing behavior of water has led to one of the most significant theoretical debates in physical chemistry: the hypothesis of a Liquid-Liquid Phase Transition (LLPT). This theory posits that in the deeply supercooled region of water—a state below the normal freezing point but where crystallization has not yet occurred—liquid water can exist in two distinct forms: a low-density liquid (LDL) and a high-density liquid (HDL).¹² The origin of water's numerous thermodynamic anomalies, such as the increase in heat capacity upon cooling, is attributed to the existence of a hypothesized liquid-liquid critical point (LLCP) that terminates a first-order phase transition line between LDL and HDL.¹²

4.2. Experimental and Computational Evidence

Direct experimental observation of the LLPT is immensely challenging because the deeply supercooled "no man's land" is a metastable state in which water rapidly crystallizes into ice.¹⁴

However, indirect evidence for the hypothesis exists in the form of two experimentally observed amorphous solid phases: high-density amorphous ice (HDA) and low-density amorphous ice (LDA).¹² It is widely theorized that these amorphous phases are the glassy states of the hypothetical HDL and LDL, respectively.¹² Experimental efforts to probe this region have focused on suppressing crystallization, for example, by rapidly cooling small nanodroplets or rapidly heating amorphous ice phases.¹³

On the computational side, molecular dynamics (MD) simulations have provided the most compelling evidence to date. Seminal work by Poole et al. first identified a first-order phase transition between two liquids using the ST2 model of water.¹² While early computational models used empirical expressions to represent intermolecular interactions and could not provide definitive proof for real water, more recent

ab initio neural network models have provided robust evidence for a discontinuous transition in the models themselves.¹³ These advanced simulations have shown that at intermediate pressures, long-lived high- and low-density liquid states can coexist, with reversible transitions between them.¹³ The use of multiple simulation techniques, including isothermal-isobaric MD, umbrella sampling, and multithermal-multibaric sampling, has shown consistent results, rigorously demonstrating liquid-liquid coexistence and leading to more precise estimates for the location of the LLCP in the models.¹³

4.3. Conflicting Viewpoints and Ongoing Debates

The LLPT hypothesis remains a subject of considerable debate within the scientific community. The primary point of contention is the absence of definitive experimental confirmation in real water, as opposed to computational models.¹³ The precise location of the LLCP is also not universally agreed upon, with estimates from different computational models varying significantly, as shown in the table below.¹² While computational evidence is robust for the specific models studied, it does not provide irrefutable proof for the existence of an LLPT in real water itself. This ongoing debate underscores a fundamental gap in the understanding of water's behavior at extreme supercooled temperatures.

Table 3: Comparative Analysis of LLCP Predictions from Computational Models

Computational Model	Predicted T _c (K)	Predicted P _c (MPa)	Source/Key Citation

ST2 Water	~235	~200	Poole et al. ¹²
TIP4P/2005	—	186	Gartner et al. ¹⁴
SCAN DFT-based Model	242 ± 5	295 ± 15	Gartner et al. ¹³

5. Applications and Practical Implications in Vacuum Technology and Space Science

5.1. Water as a Contaminant in Vacuum Systems

The unique phase behavior of water is not only a matter of fundamental research but also a significant practical challenge in vacuum technology. Water vapor is a dominant residual gas in most non-baked vacuum chambers, often comprising 80–90% of the total pressure.¹⁵ This is due to water's "unfortunate" binding energies on technical surfaces, which are neither weak enough for rapid desorption nor strong enough for permanent adhesion.¹⁵ Sources of water vapor include initial atmospheric exposure, where thousands of monolayers can adsorb to surfaces, and outgassing from polymer components, which can absorb water into their bulk.¹⁵ A better understanding of the kinetics of water desorption is considered key to solving the persistent problem of pump-down time in vacuum systems.¹⁶ Standard mitigation techniques include baking the vacuum chamber to accelerate desorption, using specific surface coatings like nickel or gold, and employing cryotrapes to pump away water vapor.¹¹

5.2. Vacuum Cooling and Freeze-Drying

The vacuum-induced phase changes in water are leveraged for several industrial processes. Vacuum cooling, a technique that exploits the rapid evaporative cooling of water, is used for fast cooling of food products like iceberg lettuce.⁹ This method is significantly faster than conventional cooling.⁹ Similarly, the principle of sublimation is central to freeze-drying (lyophilization), where a frozen product is placed in a vacuum, and the ice transitions directly

to vapor, leaving behind a dehydrated product with its structural integrity and quality preserved.⁹ This process is also being explored for wastewater treatment, offering advantages in energy consumption and resistance to scaling.⁹

5.3. Implications for Space Science and Exploration

The behavior of water in vacuum is a critical area of study for space science and exploration. The physics of two-phase flows, involving liquids and gases, is complex in the absence of gravity.¹⁷ Research conducted on the International Space Station (ISS) aims to understand how fluids behave in microgravity, which is essential for designing life support systems and managing cryogenic fluids for propulsion and power.¹⁷ The Flow Boiling and Condensation Experiment (FBCE) and the Zero Boil-Off Tank (ZBOT) experiment, for instance, are designed to gather data on two-phase transport phenomena in microgravity to ensure the reliable storage of cryogenic propellants and other fluids on long-duration missions.¹⁷

Beyond engineering, the study of water in vacuum has profound implications for planetary science. A major debate concerns the origin of Earth's oceans, with competing theories suggesting contributions from volcanic outgassing and the exogenous delivery of water by comets and asteroids.¹⁹ Water molecules form in the vacuum of the interstellar medium on cold dust grains, which are then incorporated into protoplanetary disks and subsequently into comets and asteroids.¹⁹ The survival of this water and its accumulation on planets is an ongoing area of research that directly links the physical principles of water behavior in vacuum to astrobiology and the search for habitable worlds.¹⁹

6. Gaps in the Literature and Future Research Directions

6.1. Methodological and Observational Gaps

Despite significant progress, key methodological and observational gaps persist in the literature. A central challenge is the inability of laboratory experiments to perfectly replicate the extreme environments of space, limiting the accuracy of simulation results.¹⁹ The "no man's land" of supercooled water remains notoriously difficult to probe experimentally, and novel techniques are needed to capture the rapid phase transitions before homogeneous ice

nucleation occurs.¹³ While microjet experiments have demonstrated the ability to create free, collisionless vapor surfaces in a vacuum, the rapid evaporation and freezing of water still pose a challenge to conducting high-resolution studies of complex aqueous solutions of biological or chemical relevance.¹⁰

6.2. Addressing the LLPT Controversy

Resolving the debate over the LLPT remains a high-priority goal for future research. This will require continued and concerted effort on both the computational and experimental fronts. On the computational side, there is a need for the development of more chemically realistic *ab initio* models that can provide more accurate and converging predictions for the location of the LLCP in real water.¹³ Experimentally, continued efforts using techniques like rapid heating of amorphous ice and the rapid cooling of nanodroplets are essential to provide direct or semi-direct evidence that can validate or refute the predictions from computational models.¹⁴ A convergence of results between theory and experiment would be a landmark achievement in this field.

6.3. Interdisciplinary Research

Future research must bridge the gaps between disparate fields to address larger questions. In planetary science, novel observational data from the James Webb Space Telescope (JWST) is expected to provide new insights into water formation processes within protoplanetary disks.¹⁹ Complementary to this, future sample return missions like OSIRIS-REx and Hayabusa2 will provide physical samples of extraterrestrial water for isotopic analysis, which will help to resolve the debate on the relative contributions of internal degassing versus exogenous delivery in the formation of Earth's oceans.¹⁹ In industrial engineering, a more comprehensive understanding of the kinetics of water outgassing in vacuum systems would allow for the design of more efficient high-vacuum devices.¹⁶ Similarly, continued research on fluid dynamics in microgravity environments is essential for enabling long-duration space missions.

7. Conclusion

The phase behavior of water in low-pressure environments is a rich and multifaceted topic

that remains a frontier of scientific inquiry. This review has demonstrated that from the macroscopic paradox of the "boil-freeze" phenomenon to the complex theoretical framework of the liquid-liquid phase transition, water continues to defy simple classification. The knowledge gained from this field has direct and profound implications for technological advancements in fields as diverse as cryogenics, planetary science, and industrial engineering. While significant progress has been made, particularly through advanced computational modeling and innovative experimental techniques, fundamental questions remain. The lack of definitive experimental confirmation for the LLPT in real water and the challenges of simulating the extreme conditions of space highlight key areas for future research. As scientific inquiry continues to push the boundaries of extreme conditions in both laboratories and space, a deeper understanding of water's unique properties will be essential for both fundamental discovery and practical innovation.

Works cited

1. Phase diagram of water and ice - Statistical Physics Group, accessed on September 7, 2025, <https://ergodic.ugr.es/termo/lecciones/water1.html>
2. Phase diagram - Wikipedia, accessed on September 7, 2025, https://en.wikipedia.org/wiki/Phase_diagram
3. 1.6: Phase Changes - Physics LibreTexts, accessed on September 7, 2025, [https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_\(OpenStax\)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_\(OpenStax\)/01%3A_Temperature_and_Heat/1.06%3A_Phase_Changes](https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/01%3A_Temperature_and_Heat/1.06%3A_Phase_Changes)
4. Triple point - Wikipedia, accessed on September 7, 2025, https://en.wikipedia.org/wiki/Triple_point
5. If water was suddenly exposed to the vacuum of space, how rapidly would it freeze? - Reddit, accessed on September 7, 2025, https://www.reddit.com/r/askscience/comments/1x40is/if_water_was_suddenly_exposed_to_the_vacuum_of/
6. Can Pulling a Vacuum too Fast Freeze Water/Moisture? - HVAC School, accessed on September 7, 2025, <http://www.hvacrschool.com/can-pulling-vacuum-fast-freeze-water-moisture/>
7. What would happen to water in the vacuum of outer space? - FlipScience - Top Philippine science news and features for the inquisitive Filipino., accessed on September 7, 2025, <https://www.flipscience.ph/flipfacts/water-vacuum-space/>
8. www.quora.com, accessed on September 7, 2025, <https://www.quora.com/If-you-poured-water-into-space-would-it-freeze-or-evaporate-first#:~:text=It%20will%20vacuum%20boil%20and,at%20equilibrium%20temperature%20or%20gone.>
9. The morphological visualization of the water in vacuum cooling and ..., accessed on September 7, 2025, https://www.researchgate.net/publication/229178257_The_morphological_visualization_of_the_water_in_vacuum_cooling_and_freezing_process
10. Early Microjet Experimentation with Liquid Water in Vacuum - PMC, accessed on September 7, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC10035024/>

11. (PDF) Early Microjet Experimentation with Liquid Water in Vacuum, accessed on September 7, 2025,
https://www.researchgate.net/publication/367653315_Early_Microjet_Experimentation_with_Liquid_Water_in_Vacuum
12. (PDF) Liquid-liquid phase transition in water - ResearchGate, accessed on September 7, 2025,
https://www.researchgate.net/publication/262992946_Liquid-liquid_phase_transition_in_water
13. Liquid-Liquid Transition in Water from First Principles - PGD Group at Princeton University, accessed on September 7, 2025,
http://pablonet.princeton.edu/pgd/papers/298_Gartner.pdf
14. Liquid-Liquid Phase Transition in Simulated Supercooled Water Nanodroplets | Phys. Rev. Lett. - Physical Review Link Manager, accessed on September 7, 2025,
<https://link.aps.org/doi/10.1103/PhysRevLett.134.138001>
15. (PDF) Water in Vacuum Systems: Problems and Solutions - ResearchGate, accessed on September 7, 2025,
https://www.researchgate.net/publication/384148012_Water_in_Vacuum_Systems_Problems_and_Solutions
16. Sources of Water Vapor in Vacuum Systems | Normandale Community College, accessed on September 7, 2025,
<https://www.normandale.edu/academics/degrees-certificates/vacuum-and-thin-film-technology/articles/sources-of-water-vapor-in-vacuums-systems.html>
17. Fluid Science - NASA, accessed on September 7, 2025,
<https://www.nasa.gov/glenn/glenn-expertise-space-exploration/physical-sciences-program/fluid-science/>
18. What is Cryogenics? - CO2 Meter, accessed on September 7, 2025,
<https://www.co2meter.com/blogs/news/what-is-cryogenics>
19. The Formation and Persistence of Water Molecules in the Vacuum of ..., accessed on September 7, 2025,
<https://medium.com/global-science-news/the-formation-and-persistence-of-water-molecules-in-the-vacuum-of-space-implications-for-ocean-ba449553c437>
20. The Two Faces of Liquid Water - UC San Diego Today, accessed on September 7, 2025, <https://today.ucsd.edu/story/two-faces-of-liquid-water>