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l. Introduction: The Synergistic Intersection of Al and
Thermodynamics

1.1. The Role of Thermodynamics in Modern Science and Engineering

Thermodynamics, the science governing energy, entropy, and the criteria for phase
equilibrium, provides the fundamental physical constraints underpinning material behavior
and system operations across engineering and natural sciences. Its principles are
indispensable for optimizing industrial operations, advancing novel materials discovery, and
achieving energy efficiency and sustainability goals." However, traditional methodologies for
thermodynamic analysis face persistent limitations when applied to systems of increasing
complexity, size, or time duration. High-fidelity techniques, such such as Density Functional
Theory (DFT) or

ab initio Molecular Dynamics (AIMD), while accurate, are computationally prohibitive. These
computational barriers prevent the comprehensive exploration of high-dimensional parameter
spaces or the simulation of phenomena over the long timescales necessary to capture
meaningful thermodynamic behavior.?

The need to overcome these limitations—specifically, the high cost of achieving high
accuracy—has created a compelling impetus for integrating advanced computational tools.
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This critical juncture has driven the adoption of Artificial Intelligence (Al) and Machine
Learning (ML), which offer the prospect of retaining high accuracy while drastically
accelerating the speed of simulation and prediction. The consequence of this integration is
the rapid development of ML models that function as high-speed surrogate potentials,
enabling the exploration of regimes previously deemed intractable due to time and resource
constraints.

1.2. Defining the Al/ML Landscape in Scientific Computing

The modern integration of Al into scientific computing is rooted in the computational
revolution of the 21st century, characterized by the substantial proliferation of data and
enhanced hardware capabilities.” Conceptually, the groundwork for Al exploration was laid
much earlier, notably with Alan Turing's early work and the development of the Stochastic
Neural Analog Reinforcement Calculator (SNARC), one of the first artificial neural networks.’

The application of Al in thermodynamics represents a significant methodological paradigm
shift—from traditional, experience-driven modeling techniques to a data-driven approach that
leverages high-throughput data to analyze complex system behaviors.® Al primarily serves
three crucial, interlinked functions in this domain: enhancing predictive modeling, accelerating
complex simulations, and optimizing intricate physical processes. This transformative
movement has profoundly improved the efficiency and accuracy of fundamental materials
innovation.®

1.3. Dual Modalities of Al-Thermodynamics Integration

The literature concerning Al and thermodynamics can be broadly divided into two
complementary modalities, reflecting both the utilitarian application of Al as a tool and the
theoretical investigation of Al itself through a thermodynamic lens:

1. Al for Thermodynamics: This dominant modality focuses on applying ML algorithms to
solve classical thermophysical problems, such as predicting material properties,
modeling complex phase equilibria, or optimizing energy management systems.

2. Thermodynamics of Al: This emerging theoretical field applies statistical mechanics
and thermodynamic principles, such as entropy and stochastic processes, to quantify,
understand, or improve the structure and training dynamics of Al algorithms.’

The evolution of the field, starting with applied problems (Al for prediction) and progressing



toward a fundamental investigation (Thermodynamics of Al), indicates a maturation where
physical laws are not merely inputs but are increasingly utilized to inform the architecture and
resilience of the ML algorithms themselves. This convergence suggests a movement toward a
unified theoretical framework.

ll. Evolution of Data-Driven Thermophysical Modeling:
From Classification to Prediction

The field's chronological development illustrates a clear progression, moving from utilizing
neural networks for simple classification tasks to employing them for generating high-fidelity
physical interaction potentials.

2.1. Early Statistical and Neural Network Applications (Pre-2007)

Initial applications of machine learning in physics demonstrated its power in tackling complex
identification problems. Seminal studies focused on classifying phases of matter and
accurately identifying phase transitions, particularly in systems where the Hamiltonian was
ill-defined or the order parameters were unknown.’ For instance, researchers successfully
employed deep learning and Convolutional Neural Networks (CNNs), inspired by their success
in image recognition, to map out complete two-dimensional topological phase diagrams of
quantum systems.'® By training networks on momentum-space density images of ultracold
guantum gases, these methods achieved accurate characterization of transitions, such as the
superfluid-to-Mott-insulator transition, demonstrating results that were not feasible using
conventional analytical methods.®

2.2. The Breakthrough: Machine Learning Force Fields (MLFFs)

The central challenge in computational thermodynamics is bridging the gap between the
speed of classical MD, which relies on less accurate empirical potentials, and the fidelity of
computationally expensive ab initio methods.® The solution materialized in the form of
Machine Learning Force Fields (MLFFs), which were developed to emulate the potential



energy surface derived from high-level electronic structure calculations (e.g., DFT).

2.2.1. Seminal Study: High-Dimensional Neural Network Potentials (HDNNPs)

The breakthrough in MLFFs is widely attributed to the work by Behler and Parrinello in 2007,
who introduced the concept of High-Dimensional Neural Network Potentials (HDNNPs)." The
core finding of their work was the formulation of the total energy (

) of a chemical system as a sum of individual atomic energy contributions (), where each is
determined solely by the local chemical environment of atom ." By utilizing atom-centered
symmetry functions as input, the neural network could treat all atoms of the same type
identically, ensuring physical invariance.'

This invention addressed the fundamental trade-off, delivering the energetic and force
accuracy of electronic structure calculations but computed orders of magnitude faster. This
acceleration is critical: MLFF simulations, even for large systems (e.g., 10,000 atoms), can
achieve high sampling rates, enabling the simulation of sufficient periods necessary to obtain
converged bulk thermodynamic properties.'

2.2.2. Subsequent Advancements

Following the HDNNP architecture, subsequent advancements have focused on expanding
the complexity and transferability of these models. This includes the development of
increasingly sophisticated architectures to handle multicomponent systems and incorporate
polarizable effects.”® Furthermore, deep learning frameworks, such as CGnets, have been
developed to tackle the challenge of coarse-graining large macromolecular systems. CGnets
reformulate coarse-graining as a supervised ML problem, enabling the learning of
coarse-grained free energy functions via force-matching schemes. Crucially, these deep
learning approaches successfully capture multibody interaction terms that emerge from
dimensionality reduction, which classical coarse-graining methods often fail to represent,
thereby allowing accurate free energy surface predictions without explicit solvent models.

Table 1 summarizes key studies that established critical methodologies in the fusion of Al and
thermodynamics.

Table 1: Seminal Studies in Al-Enhanced Thermodynamics



Study (Author,
Year)

Core
Thermodynamic
Problem

Al Methodology

Core Finding (IEEE
Citation
Placeholder)

Behler & Parrinello
(2007) "

Potential Energy
Surface Modeling
for MD

High-Dimensional
Neural Network
Potential (HDNNP)

Established the
first
‘'second-generation
' ML potential by
summing atomic
energy
contributions
based on local
environment,
enabling ab initio
accuracy at MD
speeds.

Sohl-Dickstein et
al. (2015)

Generative
Modeling and
Probability
Distribution

Diffusion Models
(Non-Equilibrium
Physics Inspiration)

Developed highly
flexible, tractable
generative models
by simulating
iterative forward
diffusion and a
learned reverse
diffusion process.

Rosenberger et al.
(2022) *

Equation of State
(EOS) Consistency

Free Energy Neural
Network (FE-NN) &
Automatic

Differentiation (AD)

Ensured exact
preservation of
Maxwell relations
and fundamental
thermodynamic
consistency by
training the model
on the derivatives
of a single learned
free energy
function .

Shams & Tiwary
(2024) &

Al Interpretability

Thermodynamics-|
nspired Explainable

Introduced
interpretation




(XAI) Representations entropy, drawing
(TIERA) inspiration from
classical
thermodynamics,
to quantify and
generate optimally
human-interpretabl
e explanations for
complex black-box
Al models.

lll. Core Research Themes: Al for Predictive Modeling
and System Optimization

The practical applications of Al in thermodynamics fall largely under two umbrella themes:
accelerating the accurate prediction of properties and enhancing the optimization and control
of macroscopic systems.

3.1. Theme 1: Predictive Modeling and Simulation Acceleration

The core utility of ML in predictive modeling lies in its capacity to process high-throughput
data—often generated by materials genome projects and quantum chemistry simulations—to
deeply mine complex structure—performance correlation laws.® These hybrid models, which
employ diverse techniques such as linear, tree, and ensemble ML algorithms, are trained on
input features derived from computational data sets (e.g., DFT data) to accelerate the study
of materials and predict previously inaccessible thermal properties.?®

One key area of acceleration is force field parameterization. For critical applications like
binding free energy calculations in drug discovery, the accurate generation of parameters
such as partial charges is essential but traditionally time-consuming. ML models trained on
DFT-based atomic charges can rapidly and accurately predict these charges, reducing the
required time from hours to less than a minute. This capability allows researchers to
synthesize the predicted parameters with other neural network outputs (e.g., atom types and
phase angles) to produce complete, high-accuracy topologies for small drug-like molecules.?



The successful deployment of Al in predicting thermodynamic behavior is fundamentally an
economic and temporal efficiency multiplier. By simulating various thermodynamic conditions
and predicting material performance, ML algorithms allow researchers to systematically filter
and focus development resources on only the most promising candidates. This iterative
process of virtual screening and validation significantly shortens the timeframe required to
bring new materials to market, a critical advantage in fast-paced industries such as
electronics and renewable energy.

3.2. Theme 2: Optimization and Control of Industrial Thermodynamic
Systems

Al has transformed the study of thermodynamics from a passive analytical pursuit into an
active mechanism for system control and improvement. Al-driven optimization techniques,
notably genetic algorithms and reinforcement learning, are instrumental in managing complex
industrial processes to achieve high energy efficiency and reliability. This methodology
extends to crucial areas like demand-side energy management, where Al is used to optimize
energy consumption scheduling, leading to enhanced energy efficiency, cost reduction, and
operational sustainability.

Furthermore, Al integration significantly enhances simulation methodologies through
surrogate modeling. Surrogate models provide rapid evaluations of complex thermodynamic
processes, which is particularly valuable in high-stakes environments, such as nuclear power
plants or chemical processing facilities, where traditional experimentation is impractical due
to cost or safety concerns. This capability allows engineers to conduct extensive “what-if”
analyses quickly, leading to improved system dynamics understanding and enhanced
operational safety. The ultimate implication of this trend is the fusion of Al and
thermodynamics acting as a pivotal force in fostering a more sustainable and efficient global
future through optimized energy systems and materials discovery.

IV. Addressing Consistency: Physics-Informed and
Theory-Constrained Al

A primary philosophical and practical challenge in applying data-driven models to physical
science is ensuring that predictive accuracy does not come at the expense of fundamental
physical consistency. Black-box models often learn data patterns without inherent regard for



physical laws.

4.1. The Challenge of Thermodynamic Inconsistency in Black-Box
Models

Standard machine learning techniques, such as Multi-Task Neural Networks (MT-NNs) or
Kernel Ridge Regression, are designed to minimize the error between predicted and target
properties. When multiple thermodynamic properties (e.g., pressure, chemical potential, and
internal energy) are treated as independent targets, these models inherently risk violating the
rigorous differential relationships dictated by the calculus of thermodynamics.?” This leads to
models that are physically inconsistent and violate core constraints like the Maxwell relations,
rendering them unreliable, particularly when extrapolating beyond the training domain.?

4.2. Physics-Informed Neural Networks (PINNs) in Thermal Modeling

Physics-Informed Neural Networks (PINNs) emerged as a significant paradigm shift, offering a
hybrid approach that enforces consistency by embedding known physical laws directly into
the model's structure. Unlike conventional deep learning, which relies solely on labeled data,
PINNs incorporate governing Partial Differential Equations (PDEs)—such as those describing
energy conservation, fluid dynamics, or heat transfer—into the neural network's loss
function.”’

This mechanism compels the neural network to find solutions that are not only accurate but
also physically consistent, even in regimes of limited data.?” This makes PINNs highly valuable
for complex thermal modeling, such as in battery systems and electronics.?” Furthermore,
research has focused on adapting PINNs to solve challenging problems involving
discontinuities, such as heat transfer across imperfect contact interfaces governed by Kapitza
thermal resistance, by employing augmented-variable formulations that maintain network
differentiability while capturing complex jumps in the solution.*®

4.3. Preserving Maxwell Relations via Automatic Differentiation

A more fundamental approach to enforcing consistency in equilibrium thermodynamics was



demonstrated by Rosenberger et al. (2022) with the Free Energy Neural Network (FE-NN).”
The underlying principle of thermodynamics dictates that all state variables are derivatives of
a single fundamental thermodynamic function, such as the Helmholtz free energy (

).

The FE-NN models this fundamental function directly using an Artificial Neural Network.” The
key enabling technology is

Automatic Differentiation (AD), which is used in a novel way to define the predicted
properties, such as pressure () and chemical potential (), as the analytical derivatives of the
learned free energy function () with respect to the state variables (volume, particle number, or
temperature).??

The network's parameters () are optimized by minimizing a loss function that compares the
actual properties to the derivatives of . By forcing the relationship between properties to
originate from a single underlying function, the FE-NN ensures the exact preservation of the
Maxwell relations—the inherent consistency requirements of thermodynamics—which
traditional MT-NNs fail to maintain. This sophisticated use of AD ensures high accuracy and
physical coherence simultaneously, marking a necessary evolution in the development of
scientifically valid Al models.?

V. Conflicting Viewpoints and Ongoing Theoretical
Debates

The integration of Al into complex physical systems has introduced critical trade-offs and
sparked theoretical debates regarding accountability, model veracity, and fundamental
scientific interpretation.

5.1. Debate I: The Accuracy-Interpretability Trade-Off

A persistent conflict in machine learning literature is the trade-off between predictive
accuracy and model interpretability. Deep learning models often achieve superior accuracy by
learning intricate, high-dimensional patterns, but their decision-making processes remain
opaque—the "black-box" dilemma.* Conversely, simpler, more interpretable models often lack



the capacity to capture complex, non-linear physical relationships.*

In the context of thermodynamics, particularly in critical industrial or scientific applications,
interpretability is essential for fostering user trust, meeting compliance standards, and
ensuring accountability.® If a complex Al model predicts a catastrophic material failure or a
suboptimal reactor condition, engineers require transparent reasoning to diagnose the cause
and implement corrective measures.** This tension means that in regulated fields, researchers
may choose simpler, rule-based or inherently interpretable models—even if they yield
marginally lower predictive accuracy—to guarantee traceability and clear criteria.*
Consequently, significant effort is now directed toward developing inherently interpretable
models, such as Explainable Boosting Machines (EBMs), or post-hoc Explainable Al (XAl)
frameworks to mitigate this trade-off.*

5.2. Debate lI: Theoretical Unification and the Thermodynamics of Al

Beyond using Al as a tool, a growing body of work explores the theoretical connection
between machine learning and thermodynamics itself. This research draws heavily on
statistical mechanics, viewing algorithms and data transformations through the lens of
physical processes.

5.2.1. Non-Equilibrium Inspiration for Generative Models

The concept of non-equilibrium statistical physics has fundamentally inspired advanced
machine learning architectures, particularly generative models. The development of diffusion
models, for example, is based on the essential idea of modeling complex data distribution by
simulating an iterative forward diffusion process that systematically destroys structure. The
subsequent step involves learning the reverse diffusion process that restores the structure,
yielding a flexible and tractable generative model of the data.”” This physical analogy provides
a rigorous, principled framework for developing powerful algorithms capable of rapid
sampling and evaluation of complex probability distributions.

5.2.2. Quantifying Interpretability with Entropy



An evolving area of XAl utilizes classical thermodynamic principles to solve the interpretability
problem. Shams and Tiwary (2024) introduced the concepts of Interpretation Entropy and
the Thermodynamics-inspired Explainable Representations of Al (TIERA). This approach
draws inspiration from classical thermodynamics to provide a universal metric for evaluating
and generating optimally human-interpretable explanations for predictions made by
black-box Al models across diverse domains, including molecular simulations and
classification tasks.®

5.2.3. Al Optimization as a Non-Equilibrium Process

The training dynamics of neural networks, often governed by algorithms like stochastic
gradient descent (SGD), exhibit close parallels to natural non-equilibrium processes, such as
protein folding.** Analysis using a Fokker-Planck approach, adapted from statistical physics,
demonstrates that conventional SGD often settles into a non-equilibrium stationary state
characterized by persistent currents in the parameter space. Critically, this non-equilibrium
state exhibits a measurable entropy production rate for any given training trajectory, and the
distribution of these rates adheres to the integral and detailed fluctuation
theorems—non-equilibrium generalizations of the Second Law of Thermodynamics.*® This
theoretical analysis is crucial for understanding the optimization process and engineering
equilibrium stationary states for specific applications, such as Bayesian machine learning.*

5.3. Debate lll: Generalizability vs. Interpolation

A persistent practical limitation across many Deep Learning (DL) applications is the critical
difference between interpolation (predicting within the range of training data) and reliable
extrapolation (predicting outside the known domain).*” While ML models demonstrate
immense success in accurately interpolating properties, their reliability significantly degrades
when they are required to predict the behavior of novel materials or thermodynamic states far
beyond what they have been trained on. Since the inherent goal of scientific Al is often the
autonomous discovery of unprecedented materials or phases, this limitation severely curtails
the generalizability and real-world applicability of currently trained models.®” Overcoming this
bottleneck requires innovative modeling methods that inherently possess better extrapolation
capabilities, rather than relying solely on perpetually expanding the training dataset.*’



VI. Identified Gaps and Deficiencies in the Current
Literature

The deficiencies in the current body of work highlight opportunities for fundamental and
applied advancements, forming the natural foundation for future research efforts.

6.1. Gap 1: Robust Integration of Non-Equilibrium Statistical
Mechanics (NESM)

Despite the theoretical inspiration drawn from non-equilibrium thermodynamics for specific
generative models (e.g., Diffusion Models) °, a substantial gap exists in developing a
generalized, systematic mathematical and computational framework for integrating generative
modeling with the full scope of Non-Equilibrium Statistical Mechanics (NESM).*® The field
currently lacks comprehensive models capable of simulating, predicting, and understanding
complex dynamical systems that operate far from thermodynamic equilibrium.

Furthermore, a significant theoretical gap concerns the management and understanding of
stochasticity. Real-world systems and computational models inevitably carry inherent
uncertainties. At present, minimal research has addressed the specific thermodynamic
consequences arising from this unavoidable uncertainty in dynamic systems, which is a key
requirement for bridging the gap between theoretical stochastic thermodynamics and
practical Al applications.*” The future requires dedicated effort to build coherent systematic
methodologies, analogous to the FE-NN for equilibrium systems, to handle time-dependent,
dissipative processes with physical rigor.

6.2. Gap 2: Overcoming Extrapolation Limitations via Hybrid Active
Learning

The inability of existing DL models to reliably extrapolate remains the primary technological
bottleneck limiting the progress toward truly autonomous discovery in thermophysical
science.’’ Relying solely on vast static datasets for high-dimensional design space exploration
is inefficient.*°



The critical solution lies in the robust deployment of Active Learning (AL), a technique that
intelligently guides data collection or high-fidelity simulation towards the most informative,
unexplored regions of the parameter space.*® However, the systematic implementation of
theory-informed machine learning within AL workflows is underdeveloped. This includes the
use of physics-infused kernels, discrepancy models that account for simulation-experiment
differences, or Bayesian conavigation frameworks.“° The necessary step forward involves
perfecting the autonomous implementation of closed-loop systems—often termed
"self-driving labs"—that seamlessly integrate targeted experimentation or simulation with
theory-informed Bayesian optimization and ML model refinement. This fusion is essential to
move beyond passive prediction and into an era of autonomous material discovery.

6.3. Gap 3: Data Scarcity, Standardization, and Model Transferability

While high-throughput screening initiatives have generated significant data, data scarcity
remains a critical issue for highly specialized chemical systems or complex,
difficult-to-measure kinetic phenomena. This scarcity is compounded by the poor
transferability of models; a DL model trained on one chemical system frequently fails when
applied to a chemically dissimilar system.*

To address these issues and maximize the utility of existing high-throughput databases (e.g.,
the Computational Materials Repository, CMR) *', there is a pressing need for the development
of systematic and standardized benchmarking frameworks. These frameworks are required to
consistently evaluate the efficiency, precision, and generalizability of various ML algorithms
across distinct domains of physics and materials science.” Enhanced standardization and a
focus on transfer learning methods are necessary to accelerate the predictive capabilities of
the field.

VIl. Future Research Trajectories and
Recommendations

Based on the synthesis of the literature, future research in Al and thermodynamics must
prioritize three core trajectories: methodological development focused on physical
consistency and interpretability, expansion into industrial-scale sustainable systems, and
theoretical breakthroughs in non-equilibrium processes.



7.1. Advancing Hybrid Theory-Informed Modeling and Explainable Al
(XALI)

Continued research must focus on generalizing and scaling theory-constrained models such
as PINNs and FE-NNs to manage increasingly complex systems. The principle of enforcing
theoretical consistency—by embedding Maxwell relations, conservation laws, and other
fundamental constraints into the loss function—must be rigorously applied to improve model
generalizability and physical plausibility.®' Furthermore, the dual challenge of accuracy and
interpretability necessitates continued innovation in XAI. Future work should refine methods
like TIERA and interpretation entropy to provide quantifiable, model-agnostic explanations,
thereby building essential trust and accountability, particularly in high-stakes thermodynamic
applications.®

7.2. Large-Scale Simulation and Sustainable Systems Optimization

The application of Al must be significantly expanded to address macro-level sustainability
challenges. This includes leveraging reinforcement learning and complex systems theory for
the dynamic optimization of large-scale energy systems, smart grids, and renewable energy
infrastructure. Surrogate modeling will remain crucial for streamlining the design and analysis
phases of complex chemical and thermal processes, accelerating the deployment of
next-generation energy-efficient solutions and materials.

7.3. Pioneering Research in Non-Equilibrium Thermodynamics

The most challenging and potentially transformative research direction involves filling the
theoretical gap in Non-Equilibrium Statistical Mechanics (NESM). Future research must
develop systematic computational methodologies for dynamic thermodynamic processes,
including those involving turbulence, chemical kinetics, and complex dissipative phenomena.*
This work should focus on understanding the role of stochasticity, quantifying entropy
production rates in realistic physical systems, and developing Al frameworks that are
inherently grounded in the fluctuation theorems of non-equilibrium physics.*® This theoretical
unification holds the key not only to modeling realistic kinetic phenomena but also to



advancing the fundamental theoretical understanding of Al itself.
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