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I. Introduction: The Synergistic Intersection of AI and 
Thermodynamics 
 

 

1.1. The Role of Thermodynamics in Modern Science and Engineering 
 

Thermodynamics, the science governing energy, entropy, and the criteria for phase 
equilibrium, provides the fundamental physical constraints underpinning material behavior 
and system operations across engineering and natural sciences. Its principles are 
indispensable for optimizing industrial operations, advancing novel materials discovery, and 
achieving energy efficiency and sustainability goals.1 However, traditional methodologies for 
thermodynamic analysis face persistent limitations when applied to systems of increasing 
complexity, size, or time duration. High-fidelity techniques, such such as Density Functional 
Theory (DFT) or 

ab initio Molecular Dynamics (AIMD), while accurate, are computationally prohibitive. These 
computational barriers prevent the comprehensive exploration of high-dimensional parameter 
spaces or the simulation of phenomena over the long timescales necessary to capture 
meaningful thermodynamic behavior.3 

The need to overcome these limitations—specifically, the high cost of achieving high 
accuracy—has created a compelling impetus for integrating advanced computational tools. 

https://circularastronomy.com/2025/10/05/the-ai-thermodynamics-revolution-accelerating-scientific-discovery-and-engineering-a-sustainable-future/
https://circularastronomy.com/2025/10/05/the-ai-thermodynamics-revolution-accelerating-scientific-discovery-and-engineering-a-sustainable-future/
https://circularastronomy.com/2025/10/05/the-ai-thermodynamics-revolution-accelerating-scientific-discovery-and-engineering-a-sustainable-future/


This critical juncture has driven the adoption of Artificial Intelligence (AI) and Machine 
Learning (ML), which offer the prospect of retaining high accuracy while drastically 
accelerating the speed of simulation and prediction. The consequence of this integration is 
the rapid development of ML models that function as high-speed surrogate potentials, 
enabling the exploration of regimes previously deemed intractable due to time and resource 
constraints. 

 

1.2. Defining the AI/ML Landscape in Scientific Computing 
 

The modern integration of AI into scientific computing is rooted in the computational 
revolution of the 21st century, characterized by the substantial proliferation of data and 
enhanced hardware capabilities.5 Conceptually, the groundwork for AI exploration was laid 
much earlier, notably with Alan Turing's early work and the development of the Stochastic 
Neural Analog Reinforcement Calculator (SNARC), one of the first artificial neural networks.5 

The application of AI in thermodynamics represents a significant methodological paradigm 
shift—from traditional, experience-driven modeling techniques to a data-driven approach that 
leverages high-throughput data to analyze complex system behaviors.6 AI primarily serves 
three crucial, interlinked functions in this domain: enhancing predictive modeling, accelerating 
complex simulations, and optimizing intricate physical processes. This transformative 
movement has profoundly improved the efficiency and accuracy of fundamental materials 
innovation.6 

 

1.3. Dual Modalities of AI-Thermodynamics Integration 
 

The literature concerning AI and thermodynamics can be broadly divided into two 
complementary modalities, reflecting both the utilitarian application of AI as a tool and the 
theoretical investigation of AI itself through a thermodynamic lens: 

1.​ AI for Thermodynamics: This dominant modality focuses on applying ML algorithms to 
solve classical thermophysical problems, such as predicting material properties, 
modeling complex phase equilibria, or optimizing energy management systems. 

2.​ Thermodynamics of AI: This emerging theoretical field applies statistical mechanics 
and thermodynamic principles, such as entropy and stochastic processes, to quantify, 
understand, or improve the structure and training dynamics of AI algorithms.7 

The evolution of the field, starting with applied problems (AI for prediction) and progressing 



toward a fundamental investigation (Thermodynamics of AI), indicates a maturation where 
physical laws are not merely inputs but are increasingly utilized to inform the architecture and 
resilience of the ML algorithms themselves. This convergence suggests a movement toward a 
unified theoretical framework. 

 

II. Evolution of Data-Driven Thermophysical Modeling: 
From Classification to Prediction 
 

The field's chronological development illustrates a clear progression, moving from utilizing 
neural networks for simple classification tasks to employing them for generating high-fidelity 
physical interaction potentials. 

 

2.1. Early Statistical and Neural Network Applications (Pre-2007) 
 

Initial applications of machine learning in physics demonstrated its power in tackling complex 
identification problems. Seminal studies focused on classifying phases of matter and 
accurately identifying phase transitions, particularly in systems where the Hamiltonian was 
ill-defined or the order parameters were unknown.9 For instance, researchers successfully 
employed deep learning and Convolutional Neural Networks (CNNs), inspired by their success 
in image recognition, to map out complete two-dimensional topological phase diagrams of 
quantum systems.10 By training networks on momentum-space density images of ultracold 
quantum gases, these methods achieved accurate characterization of transitions, such as the 
superfluid-to-Mott-insulator transition, demonstrating results that were not feasible using 
conventional analytical methods.10 

 

2.2. The Breakthrough: Machine Learning Force Fields (MLFFs) 
 

The central challenge in computational thermodynamics is bridging the gap between the 
speed of classical MD, which relies on less accurate empirical potentials, and the fidelity of 
computationally expensive ab initio methods.3 The solution materialized in the form of 
Machine Learning Force Fields (MLFFs), which were developed to emulate the potential 



energy surface derived from high-level electronic structure calculations (e.g., DFT). 

 

2.2.1. Seminal Study: High-Dimensional Neural Network Potentials (HDNNPs) 

 

The breakthrough in MLFFs is widely attributed to the work by Behler and Parrinello in 2007, 
who introduced the concept of High-Dimensional Neural Network Potentials (HDNNPs).11 The 
core finding of their work was the formulation of the total energy ( 

) of a chemical system as a sum of individual atomic energy contributions (), where each  is 
determined solely by the local chemical environment of atom .13 By utilizing atom-centered 
symmetry functions as input, the neural network could treat all atoms of the same type 
identically, ensuring physical invariance.15 

This invention addressed the fundamental trade-off, delivering the energetic and force 
accuracy of electronic structure calculations but computed orders of magnitude faster. This 
acceleration is critical: MLFF simulations, even for large systems (e.g., 10,000 atoms), can 
achieve high sampling rates, enabling the simulation of sufficient periods necessary to obtain 
converged bulk thermodynamic properties.16 

 

2.2.2. Subsequent Advancements 

 

Following the HDNNP architecture, subsequent advancements have focused on expanding 
the complexity and transferability of these models. This includes the development of 
increasingly sophisticated architectures to handle multicomponent systems and incorporate 
polarizable effects.18 Furthermore, deep learning frameworks, such as CGnets, have been 
developed to tackle the challenge of coarse-graining large macromolecular systems. CGnets 
reformulate coarse-graining as a supervised ML problem, enabling the learning of 
coarse-grained free energy functions via force-matching schemes. Crucially, these deep 
learning approaches successfully capture multibody interaction terms that emerge from 
dimensionality reduction, which classical coarse-graining methods often fail to represent, 
thereby allowing accurate free energy surface predictions without explicit solvent models. 

Table 1 summarizes key studies that established critical methodologies in the fusion of AI and 
thermodynamics. 

Table 1: Seminal Studies in AI-Enhanced Thermodynamics 



 

Study (Author, 
Year) 

Core 
Thermodynamic 
Problem 

AI Methodology Core Finding (IEEE 
Citation 
Placeholder) 

Behler & Parrinello 
(2007) 11 

Potential Energy 
Surface Modeling 
for MD 

High-Dimensional 
Neural Network 
Potential (HDNNP) 

Established the 
first 
'second-generation
' ML potential by 
summing atomic 
energy 
contributions 
based on local 
environment, 
enabling ab initio 
accuracy at MD 
speeds. 

Sohl-Dickstein et 
al. (2015) 19 

Generative 
Modeling and 
Probability 
Distribution 

Diffusion Models 
(Non-Equilibrium 
Physics Inspiration) 

Developed highly 
flexible, tractable 
generative models 
by simulating 
iterative forward 
diffusion and a 
learned reverse 
diffusion process. 

Rosenberger et al. 
(2022) 21 

Equation of State 
(EOS) Consistency 

Free Energy Neural 
Network (FE-NN) & 
Automatic 
Differentiation (AD) 

Ensured exact 
preservation of 
Maxwell relations 
and fundamental 
thermodynamic 
consistency by 
training the model 
on the derivatives 
of a single learned 
free energy 
function . 

Shams & Tiwary 
(2024) 8 

AI Interpretability Thermodynamics-I
nspired Explainable 

Introduced 
interpretation 



(XAI) Representations 
(TIERA) 

entropy, drawing 
inspiration from 
classical 
thermodynamics, 
to quantify and 
generate optimally 
human-interpretabl
e explanations for 
complex black-box 
AI models. 

 

III. Core Research Themes: AI for Predictive Modeling 
and System Optimization 
 

The practical applications of AI in thermodynamics fall largely under two umbrella themes: 
accelerating the accurate prediction of properties and enhancing the optimization and control 
of macroscopic systems. 

 

3.1. Theme 1: Predictive Modeling and Simulation Acceleration 
 

The core utility of ML in predictive modeling lies in its capacity to process high-throughput 
data—often generated by materials genome projects and quantum chemistry simulations—to 
deeply mine complex structure–performance correlation laws.6 These hybrid models, which 
employ diverse techniques such as linear, tree, and ensemble ML algorithms, are trained on 
input features derived from computational data sets (e.g., DFT data) to accelerate the study 
of materials and predict previously inaccessible thermal properties.23 

One key area of acceleration is force field parameterization. For critical applications like 
binding free energy calculations in drug discovery, the accurate generation of parameters 
such as partial charges is essential but traditionally time-consuming. ML models trained on 
DFT-based atomic charges can rapidly and accurately predict these charges, reducing the 
required time from hours to less than a minute. This capability allows researchers to 
synthesize the predicted parameters with other neural network outputs (e.g., atom types and 
phase angles) to produce complete, high-accuracy topologies for small drug-like molecules.26 



The successful deployment of AI in predicting thermodynamic behavior is fundamentally an 
economic and temporal efficiency multiplier. By simulating various thermodynamic conditions 
and predicting material performance, ML algorithms allow researchers to systematically filter 
and focus development resources on only the most promising candidates. This iterative 
process of virtual screening and validation significantly shortens the timeframe required to 
bring new materials to market, a critical advantage in fast-paced industries such as 
electronics and renewable energy. 

 

3.2. Theme 2: Optimization and Control of Industrial Thermodynamic 
Systems 
 

AI has transformed the study of thermodynamics from a passive analytical pursuit into an 
active mechanism for system control and improvement. AI-driven optimization techniques, 
notably genetic algorithms and reinforcement learning, are instrumental in managing complex 
industrial processes to achieve high energy efficiency and reliability. This methodology 
extends to crucial areas like demand-side energy management, where AI is used to optimize 
energy consumption scheduling, leading to enhanced energy efficiency, cost reduction, and 
operational sustainability. 

Furthermore, AI integration significantly enhances simulation methodologies through 
surrogate modeling. Surrogate models provide rapid evaluations of complex thermodynamic 
processes, which is particularly valuable in high-stakes environments, such as nuclear power 
plants or chemical processing facilities, where traditional experimentation is impractical due 
to cost or safety concerns. This capability allows engineers to conduct extensive “what-if” 
analyses quickly, leading to improved system dynamics understanding and enhanced 
operational safety. The ultimate implication of this trend is the fusion of AI and 
thermodynamics acting as a pivotal force in fostering a more sustainable and efficient global 
future through optimized energy systems and materials discovery. 

 

IV. Addressing Consistency: Physics-Informed and 
Theory-Constrained AI 
 

A primary philosophical and practical challenge in applying data-driven models to physical 
science is ensuring that predictive accuracy does not come at the expense of fundamental 
physical consistency. Black-box models often learn data patterns without inherent regard for 



physical laws. 

 

4.1. The Challenge of Thermodynamic Inconsistency in Black-Box 
Models 
 

Standard machine learning techniques, such as Multi-Task Neural Networks (MT-NNs) or 
Kernel Ridge Regression, are designed to minimize the error between predicted and target 
properties. When multiple thermodynamic properties (e.g., pressure, chemical potential, and 
internal energy) are treated as independent targets, these models inherently risk violating the 
rigorous differential relationships dictated by the calculus of thermodynamics.22 This leads to 
models that are physically inconsistent and violate core constraints like the Maxwell relations, 
rendering them unreliable, particularly when extrapolating beyond the training domain.22 

 

4.2. Physics-Informed Neural Networks (PINNs) in Thermal Modeling 
 

Physics-Informed Neural Networks (PINNs) emerged as a significant paradigm shift, offering a 
hybrid approach that enforces consistency by embedding known physical laws directly into 
the model's structure. Unlike conventional deep learning, which relies solely on labeled data, 
PINNs incorporate governing Partial Differential Equations (PDEs)—such as those describing 
energy conservation, fluid dynamics, or heat transfer—into the neural network's loss 
function.27 

This mechanism compels the neural network to find solutions that are not only accurate but 
also physically consistent, even in regimes of limited data.27 This makes PINNs highly valuable 
for complex thermal modeling, such as in battery systems and electronics.29 Furthermore, 
research has focused on adapting PINNs to solve challenging problems involving 
discontinuities, such as heat transfer across imperfect contact interfaces governed by Kapitza 
thermal resistance, by employing augmented-variable formulations that maintain network 
differentiability while capturing complex jumps in the solution.30 

 

4.3. Preserving Maxwell Relations via Automatic Differentiation 
 

A more fundamental approach to enforcing consistency in equilibrium thermodynamics was 



demonstrated by Rosenberger et al. (2022) with the Free Energy Neural Network (FE-NN).21 
The underlying principle of thermodynamics dictates that all state variables are derivatives of 
a single fundamental thermodynamic function, such as the Helmholtz free energy ( 

). 

The FE-NN models this fundamental function  directly using an Artificial Neural Network.22 The 
key enabling technology is 

Automatic Differentiation (AD), which is used in a novel way to define the predicted 
properties, such as pressure () and chemical potential (), as the analytical derivatives of the 
learned free energy function () with respect to the state variables (volume, particle number, or 
temperature).22 

The network's parameters () are optimized by minimizing a loss function that compares the 
actual properties to the derivatives of . By forcing the relationship between properties to 
originate from a single underlying function, the FE-NN ensures the exact preservation of the 
Maxwell relations—the inherent consistency requirements of thermodynamics—which 
traditional MT-NNs fail to maintain. This sophisticated use of AD ensures high accuracy and 
physical coherence simultaneously, marking a necessary evolution in the development of 
scientifically valid AI models.22 

 

V. Conflicting Viewpoints and Ongoing Theoretical 
Debates 
 

The integration of AI into complex physical systems has introduced critical trade-offs and 
sparked theoretical debates regarding accountability, model veracity, and fundamental 
scientific interpretation. 

 

5.1. Debate I: The Accuracy-Interpretability Trade-Off 
 

A persistent conflict in machine learning literature is the trade-off between predictive 
accuracy and model interpretability. Deep learning models often achieve superior accuracy by 
learning intricate, high-dimensional patterns, but their decision-making processes remain 
opaque—the "black-box" dilemma.32 Conversely, simpler, more interpretable models often lack 



the capacity to capture complex, non-linear physical relationships.32 

In the context of thermodynamics, particularly in critical industrial or scientific applications, 
interpretability is essential for fostering user trust, meeting compliance standards, and 
ensuring accountability.33 If a complex AI model predicts a catastrophic material failure or a 
suboptimal reactor condition, engineers require transparent reasoning to diagnose the cause 
and implement corrective measures.34 This tension means that in regulated fields, researchers 
may choose simpler, rule-based or inherently interpretable models—even if they yield 
marginally lower predictive accuracy—to guarantee traceability and clear criteria.32 
Consequently, significant effort is now directed toward developing inherently interpretable 
models, such as Explainable Boosting Machines (EBMs), or post-hoc Explainable AI (XAI) 
frameworks to mitigate this trade-off.34 

 

5.2. Debate II: Theoretical Unification and the Thermodynamics of AI 
 

Beyond using AI as a tool, a growing body of work explores the theoretical connection 
between machine learning and thermodynamics itself. This research draws heavily on 
statistical mechanics, viewing algorithms and data transformations through the lens of 
physical processes. 

 

5.2.1. Non-Equilibrium Inspiration for Generative Models 

 

The concept of non-equilibrium statistical physics has fundamentally inspired advanced 
machine learning architectures, particularly generative models. The development of diffusion 
models, for example, is based on the essential idea of modeling complex data distribution by 
simulating an iterative forward diffusion process that systematically destroys structure. The 
subsequent step involves learning the reverse diffusion process that restores the structure, 
yielding a flexible and tractable generative model of the data.19 This physical analogy provides 
a rigorous, principled framework for developing powerful algorithms capable of rapid 
sampling and evaluation of complex probability distributions. 

 

5.2.2. Quantifying Interpretability with Entropy 

 



An evolving area of XAI utilizes classical thermodynamic principles to solve the interpretability 
problem. Shams and Tiwary (2024) introduced the concepts of Interpretation Entropy and 
the Thermodynamics-inspired Explainable Representations of AI (TIERA).8 This approach 
draws inspiration from classical thermodynamics to provide a universal metric for evaluating 
and generating optimally human-interpretable explanations for predictions made by 
black-box AI models across diverse domains, including molecular simulations and 
classification tasks.8 

 

5.2.3. AI Optimization as a Non-Equilibrium Process 

 

The training dynamics of neural networks, often governed by algorithms like stochastic 
gradient descent (SGD), exhibit close parallels to natural non-equilibrium processes, such as 
protein folding.36 Analysis using a Fokker-Planck approach, adapted from statistical physics, 
demonstrates that conventional SGD often settles into a non-equilibrium stationary state 
characterized by persistent currents in the parameter space. Critically, this non-equilibrium 
state exhibits a measurable entropy production rate for any given training trajectory, and the 
distribution of these rates adheres to the integral and detailed fluctuation 
theorems—non-equilibrium generalizations of the Second Law of Thermodynamics.36 This 
theoretical analysis is crucial for understanding the optimization process and engineering 
equilibrium stationary states for specific applications, such as Bayesian machine learning.36 

 

5.3. Debate III: Generalizability vs. Interpolation 
 

A persistent practical limitation across many Deep Learning (DL) applications is the critical 
difference between interpolation (predicting within the range of training data) and reliable 
extrapolation (predicting outside the known domain).37 While ML models demonstrate 
immense success in accurately interpolating properties, their reliability significantly degrades 
when they are required to predict the behavior of novel materials or thermodynamic states far 
beyond what they have been trained on. Since the inherent goal of scientific AI is often the 
autonomous discovery of unprecedented materials or phases, this limitation severely curtails 
the generalizability and real-world applicability of currently trained models.37 Overcoming this 
bottleneck requires innovative modeling methods that inherently possess better extrapolation 
capabilities, rather than relying solely on perpetually expanding the training dataset.37 

 



VI. Identified Gaps and Deficiencies in the Current 
Literature 
 

The deficiencies in the current body of work highlight opportunities for fundamental and 
applied advancements, forming the natural foundation for future research efforts. 

 

6.1. Gap 1: Robust Integration of Non-Equilibrium Statistical 
Mechanics (NESM) 
 

Despite the theoretical inspiration drawn from non-equilibrium thermodynamics for specific 
generative models (e.g., Diffusion Models) 19, a substantial gap exists in developing a 
generalized, systematic mathematical and computational framework for integrating generative 
modeling with the full scope of Non-Equilibrium Statistical Mechanics (NESM).38 The field 
currently lacks comprehensive models capable of simulating, predicting, and understanding 
complex dynamical systems that operate far from thermodynamic equilibrium. 

Furthermore, a significant theoretical gap concerns the management and understanding of 
stochasticity. Real-world systems and computational models inevitably carry inherent 
uncertainties. At present, minimal research has addressed the specific thermodynamic 
consequences arising from this unavoidable uncertainty in dynamic systems, which is a key 
requirement for bridging the gap between theoretical stochastic thermodynamics and 
practical AI applications.39 The future requires dedicated effort to build coherent systematic 
methodologies, analogous to the FE-NN for equilibrium systems, to handle time-dependent, 
dissipative processes with physical rigor. 

 

6.2. Gap 2: Overcoming Extrapolation Limitations via Hybrid Active 
Learning 
 

The inability of existing DL models to reliably extrapolate remains the primary technological 
bottleneck limiting the progress toward truly autonomous discovery in thermophysical 
science.37 Relying solely on vast static datasets for high-dimensional design space exploration 
is inefficient.40 



The critical solution lies in the robust deployment of Active Learning (AL), a technique that 
intelligently guides data collection or high-fidelity simulation towards the most informative, 
unexplored regions of the parameter space.40 However, the systematic implementation of 
theory-informed machine learning within AL workflows is underdeveloped. This includes the 
use of physics-infused kernels, discrepancy models that account for simulation-experiment 
differences, or Bayesian conavigation frameworks.40 The necessary step forward involves 
perfecting the autonomous implementation of closed-loop systems—often termed 
"self-driving labs"—that seamlessly integrate targeted experimentation or simulation with 
theory-informed Bayesian optimization and ML model refinement. This fusion is essential to 
move beyond passive prediction and into an era of autonomous material discovery. 

 

6.3. Gap 3: Data Scarcity, Standardization, and Model Transferability 
 

While high-throughput screening initiatives have generated significant data, data scarcity 
remains a critical issue for highly specialized chemical systems or complex, 
difficult-to-measure kinetic phenomena. This scarcity is compounded by the poor 
transferability of models; a DL model trained on one chemical system frequently fails when 
applied to a chemically dissimilar system.37 

To address these issues and maximize the utility of existing high-throughput databases (e.g., 
the Computational Materials Repository, CMR) 41, there is a pressing need for the development 
of systematic and standardized benchmarking frameworks. These frameworks are required to 
consistently evaluate the efficiency, precision, and generalizability of various ML algorithms 
across distinct domains of physics and materials science.5 Enhanced standardization and a 
focus on transfer learning methods are necessary to accelerate the predictive capabilities of 
the field. 

 

VII. Future Research Trajectories and 
Recommendations 
 

Based on the synthesis of the literature, future research in AI and thermodynamics must 
prioritize three core trajectories: methodological development focused on physical 
consistency and interpretability, expansion into industrial-scale sustainable systems, and 
theoretical breakthroughs in non-equilibrium processes. 



 

7.1. Advancing Hybrid Theory-Informed Modeling and Explainable AI 
(XAI) 
 

Continued research must focus on generalizing and scaling theory-constrained models such 
as PINNs and FE-NNs to manage increasingly complex systems. The principle of enforcing 
theoretical consistency—by embedding Maxwell relations, conservation laws, and other 
fundamental constraints into the loss function—must be rigorously applied to improve model 
generalizability and physical plausibility.31 Furthermore, the dual challenge of accuracy and 
interpretability necessitates continued innovation in XAI. Future work should refine methods 
like TIERA and interpretation entropy to provide quantifiable, model-agnostic explanations, 
thereby building essential trust and accountability, particularly in high-stakes thermodynamic 
applications.8 

 

7.2. Large-Scale Simulation and Sustainable Systems Optimization 
 

The application of AI must be significantly expanded to address macro-level sustainability 
challenges. This includes leveraging reinforcement learning and complex systems theory for 
the dynamic optimization of large-scale energy systems, smart grids, and renewable energy 
infrastructure. Surrogate modeling will remain crucial for streamlining the design and analysis 
phases of complex chemical and thermal processes, accelerating the deployment of 
next-generation energy-efficient solutions and materials. 

 

7.3. Pioneering Research in Non-Equilibrium Thermodynamics 
 

The most challenging and potentially transformative research direction involves filling the 
theoretical gap in Non-Equilibrium Statistical Mechanics (NESM). Future research must 
develop systematic computational methodologies for dynamic thermodynamic processes, 
including those involving turbulence, chemical kinetics, and complex dissipative phenomena.38 
This work should focus on understanding the role of stochasticity, quantifying entropy 
production rates in realistic physical systems, and developing AI frameworks that are 
inherently grounded in the fluctuation theorems of non-equilibrium physics.36 This theoretical 
unification holds the key not only to modeling realistic kinetic phenomena but also to 



advancing the fundamental theoretical understanding of AI itself. 
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