

Rocket Reusability: A Comprehensive Review of Technologies, Economics, and Future Trajectories in Reusable Space Launch Systems

Summary and Novice-to-Expert Guide to Rocket Reusability See:

<https://circularastronomy.com/2025/10/06/the-reusable-rocket-revolution-a-comprehensive-guide-to-the-technology-economics-and-future-of-spaceflight/>

Introduction: The Imperative for Reusable Space Access

For the majority of the Space Age, access to orbit has been predicated on an inherently expensive and inefficient paradigm: the use of expendable launch vehicles. Traditionally, rockets were single-use machines, with each multi-million-dollar vehicle discarded after a single flight to deliver its payload.¹ This approach, largely a legacy of early ballistic missile development, treated immensely complex and costly hardware as disposable, fundamentally limiting the frequency and affordability of space access.² The primary argument for reusability, therefore, stems from a foundational economic principle: it should be less expensive to recover, refurbish, and reuse high-value hardware than to manufacture it from scratch for every mission.² This long-held "dream" of a reusable launch vehicle (RLV) has been a persistent, if elusive, goal since the earliest days of space exploration.¹

While the concept is not new, a significant resurgence in interest and, more importantly, practical application has defined the 21st century, driven primarily by a burgeoning commercial space sector.³ This modern imperative is not merely an engineering pursuit but a direct response to a growing economic demand for more affordable and frequent launch services. The successful demonstration of propulsive landing and first-stage reuse has fundamentally altered the commercial space industry, offering a more sustainable and

economically viable model for reaching orbit.⁴ The resulting reduction in launch costs is widely seen as the critical enabler for a new generation of space-based enterprises, including satellite mega-constellations, commercial space stations, in-space manufacturing, and space tourism, transforming spaceflight from an activity dominated by government agencies to a more accessible commercial frontier.³

This shift represents a fundamental change in the philosophy of launch vehicle design. The historical context reveals a transition from a paradigm where performance—specifically, maximizing payload mass fraction—was the paramount objective, to one where cost-per-kilogram-to-orbit is the primary driver. Early rocketry, rooted in the strategic imperatives of the Cold War, prioritized performance above all else, with cost being a secondary consideration.² Even the first major attempt at reusability, the Space Shuttle, ultimately failed to achieve its economic goals because its design was a compromise heavily influenced by ambitious performance and capability requirements, which led to immense operational complexity.⁸ In contrast, modern commercial efforts explicitly accept a performance penalty—for instance, by reserving a significant portion of propellant for landing maneuvers—in exchange for the profound economic benefits of reusability.¹⁰ This demonstrates that the definition of an "optimal" launch vehicle has evolved from one with the highest payload fraction to one with the lowest amortized cost per launch, a figure intrinsically linked to the number of reuses. This re-prioritization is the core catalyst of the current revolution in reusable launch systems (RLS).

The First Generation: A Critical Analysis of the Space Shuttle Program

Conceptual Origins and Architecture

The concept of a reusable spaceplane has a long history, with theoretical studies dating back to Eugen Sänger in the 1930s.¹¹ In the United States, NASA's formal design process for what would become the Space Shuttle began in 1968, with an initial vision of a fully reusable, two-stage system.¹¹ However, significant budgetary pressures and immense technical challenges forced a scaling-back of this ambition. The result was a partially reusable system, a complex compromise that would define its operational life.¹ The final architecture of the Space Transportation System (STS) consisted of three primary components: the reusable, winged Orbiter vehicle, which housed the crew and payload; two recoverable and reusable

Solid Rocket Boosters (SRBs); and a large, single-use External Tank (ET) that supplied propellant to the Orbiter's main engines during ascent.⁸ Following burnout, the SRBs separated and descended via parachute into the Atlantic Ocean, where they were recovered by ships for refurbishment. The Orbiter, after completing its mission in space, would reenter the atmosphere as a glider and land horizontally on a runway.⁹

Operational Successes and Unprecedented Capabilities

The Space Shuttle program, which operated for three decades from its first flight in 1981 to its last in 2011, was a landmark achievement in human spaceflight.³ For its entire service life, it was the world's only operational reusable spacecraft.³ Its successes were monumental and enabled a new era of on-orbit operations. The Shuttle fleet was instrumental in the construction of the International Space Station (ISS), ferrying modules, supplies, and international crews to the orbiting laboratory.⁸ It famously deployed the Hubble Space Telescope and subsequently flew multiple complex servicing missions that repaired and upgraded the observatory, preserving a critical scientific asset.⁸ The Orbiter's cavernous payload bay, capable of carrying over 24 metric tons to orbit, provided a unique capability not only to deploy large satellites but also to retrieve, repair, and return them to Earth—a feat unmatched before or since.⁸

Failures and Unfulfilled Promises

Despite its remarkable technological capabilities, the Shuttle's legacy is deeply complex and serves as a critical case study in the immense challenges of implementing reusability.⁸ The program's two most significant shortcomings were its failure to achieve its economic and safety goals.

Economically, the Shuttle never delivered on its primary promise of providing low-cost, routine access to space.⁸ The initial vision of a high flight rate with rapid turnaround proved unattainable. The process of inspecting and refurbishing the Orbiter after each flight, particularly its delicate Thermal Protection System (TPS) and complex Space Shuttle Main Engines (SSMEs), was extraordinarily labor-intensive, time-consuming, and expensive.³ Instead of flying dozens of times per year, the fleet averaged only a handful of flights, and the final inflation-adjusted cost per mission was estimated to be around \$766 million, an order of magnitude higher than originally projected.⁸

Tragically, the program also suffered two catastrophic failures that resulted in the loss of 14 astronauts.³ The destruction of

Challenger during ascent in 1986 was traced to the failure of an O-ring seal in one of the SRBs, while the loss of *Columbia* during reentry in 2003 was caused by damage to the Orbiter's TPS sustained during launch.⁸ These disasters exposed the system's inherent design vulnerabilities and the operational risks associated with such a complex vehicle.

Conflicting Viewpoints and Lessons Learned

The Space Shuttle is often viewed through two competing lenses: as a magnificent engineering accomplishment that pushed the frontiers of spaceflight, and as a profound cautionary tale about the perils of operational complexity in reusable systems.¹ The crucial lesson learned from its 30-year history is that reusability, in and of itself, is not a panacea for high launch costs. The

method of reusability and a relentless focus on operability are paramount.¹⁸ The Shuttle's failure to meet its economic objectives can be traced directly to its conceptual phase, where it was engineered as a "one-size-fits-all" solution to satisfy a diverse and often conflicting set of requirements from both NASA and the U.S. Department of Defense.¹³ The military's need for significant cross-range maneuverability during reentry from polar orbits, for example, dictated the large delta-wing design of the Orbiter.¹³ This large, aerodynamically complex airframe, in turn, required a fragile and high-maintenance TPS consisting of more than 24,000 individually manufactured silica tiles.⁹ The monumental effort required to inspect, repair, and recertify these tiles after every flight became a primary driver of the long turnaround times and exorbitant costs that ultimately defined the program.⁸ The Shuttle was designed to do everything for every potential user, and as a result, it could do nothing cheaply. This experience directly informed subsequent RLS designs, which have overwhelmingly prioritized operational simplicity and rapid turnaround over maximizing theoretical capabilities.¹⁸

Pivotal Demonstrators and Divergent Paths

The period following the *Challenger* disaster and leading into the 21st century was marked by a re-evaluation of reusability concepts, leading to a philosophical split in design approaches and the emergence of pivotal technology demonstrators that would shape the future of the

field.

The McDonnell Douglas DC-X: A New Paradigm

In the early 1990s, the McDonnell Douglas DC-X (Delta Clipper Experimental) emerged as a radical and direct conceptual counterpoint to the Space Shuttle's complex, winged architecture.²¹ Funded by the Strategic Defense Initiative Organization (SDIO), the DC-X was not intended to reach orbit but to serve as a low-cost, sub-scale prototype to demonstrate two revolutionary concepts: Vertical Takeoff and Vertical Landing (VTVL) and aircraft-like rapid turnaround.²⁰

The DC-X pioneered several key technologies and operational philosophies. It was one of the first rockets to be controlled entirely by an automated, on-board computer system, requiring only a small ground crew.²² It demonstrated the ability to take off vertically, maneuver, and land vertically using retropropulsion from its main engines—a concept previously confined to science fiction.²¹ The program embraced an incremental "fly a little, break a little" test philosophy, aiming to gain practical experience rapidly and affordably.²⁰ To further reduce costs, the vehicle was constructed using many commercial off-the-shelf components, including its flight control systems.²⁰ Between 1993 and 1996, the DC-X and its NASA-upgraded successor, the DC-XA, successfully completed a series of increasingly ambitious test flights, including one with a 26-hour turnaround between flights, proving that VTVL was not only possible but potentially highly operable.²¹

Although the program was ultimately canceled due to shifting political priorities and a landing gear failure that led to the loss of the DC-XA vehicle, its legacy is profound.²¹ The DC-X provided the foundational proof-of-concept for the VTVL architecture that is now the cornerstone of the commercial reusability revolution, directly inspiring the landing systems used by SpaceX's Falcon 9 and Blue Origin's New Shepard and New Glenn vehicles.²²

Alternative Concepts and Divergent Paths

The 1980s and 1990s represented a critical fork in the road for RLS design philosophy, with two competing models emerging. The first, an "airplane" model, relied on wings and aerodynamic lift for a horizontal runway landing (Vertical Takeoff, Horizontal Landing, or VTHL). This approach, exemplified by the Space Shuttle, seems intuitive as it leverages well-understood principles of atmospheric flight for a relatively benign, unpowered landing.²⁷

However, this path imposes a severe mass penalty in the form of wings, control surfaces, landing gear, and the extensive TPS required to protect them—all of which are dead weight during ascent and reduce payload capacity.¹⁴ Ambitious VTHL projects like the National Aero-Space Plane (NASP or X-30), which aimed to build a single-stage-to-orbit (SSTO) vehicle using air-breathing scramjet engines, and the X-33 VentureStar, a lifting-body SSTO demonstrator, were ultimately canceled after encountering insurmountable technical and materials challenges.¹

The second path was the "rocket" model, pioneered by the DC-X, which used pure propulsive power for a controlled vertical landing (VTVL). This approach avoids the significant structural mass and aerodynamic complexity of a winged system.²¹ However, it introduces its own set of formidable challenges, including the need for deeply throttleable, reignitable engines; a highly sophisticated guidance, navigation, and control (GNC) system for the landing burn; and a propellant mass penalty to execute the landing maneuvers.¹⁸ The crucial contribution of the DC-X was demonstrating that the GNC and propulsion challenges of VTVL were solvable with modern computing and control theory.²¹ Decades later, commercial entities would prove that, for first-stage recovery, the propellant penalty of VTVL was a more efficient and economically viable trade-off than the structural penalty of VTHL. This validation of the VTVL philosophy fundamentally shaped the trajectory of the 21st-century launch market.

Architectures and Technologies of Modern Reusable Launch Systems

The success of modern RLSs is not attributable to a single breakthrough but rather to the maturation and integration of numerous enabling technologies across different subsystems. The architectural choices made by developers reflect different trade-offs between performance, complexity, and operational cost.

Comparative Analysis of Recovery Methodologies

Three primary architectures for first-stage recovery have emerged in the modern era, each with distinct advantages and disadvantages.

- **Propulsive Vertical Landing (VTVL):** This is the dominant architecture for orbital-class boosters, successfully commercialized by SpaceX with its Falcon 9 and Falcon Heavy rockets and pursued by competitors such as Blue Origin for its New Glenn vehicle and

various international efforts.³ The VTVL method involves a series of in-flight engine burns after stage separation: a "boostback" burn to reverse the stage's trajectory for a return-to-launch-site (RTLS) landing, a "reentry" burn to slow the vehicle and mitigate aerodynamic heating, and a final "landing" burn to achieve a soft, powered touchdown on a ground pad or an autonomous spaceport drone ship (ASDS) at sea.³² This approach minimizes the addition of non-propulsive structural mass but requires highly sophisticated GNC systems and carries a significant propellant penalty, which reduces the vehicle's maximum payload capacity compared to an expendable mission.

- **Aerodynamic Horizontal Landing (VTHL):** Often referred to as a "fly-back" booster, this architecture uses wings and aerodynamic control surfaces to glide the stage to a conventional runway landing, akin to the Space Shuttle Orbiter.¹⁴ The primary advantage is the elimination of propellant reserves for landing, as deceleration is achieved aerodynamically.²⁸ However, this comes at the cost of a substantial dry mass penalty from the wings, landing gear, and the associated TPS needed to protect these structures, which significantly reduces payload performance.²⁸ Research into this approach is ongoing, particularly in Europe with technology demonstrators like ReFEx, which aims to validate autonomous glide-back flight and control systems for future winged stages.³⁴
- **Parachute-Assisted and Mid-Air Recovery:** This methodology is particularly suited for smaller launch vehicles where the mass penalty of a VTVL propulsive system would be prohibitive. The primary example is Rocket Lab's Electron, which uses a parachute system to decelerate its first stage for either a soft splashdown in the ocean or a mid-air capture by a helicopter.¹⁵ Mid-air capture is the preferred method as it prevents saltwater immersion, which can cause corrosion and significantly complicate refurbishment efforts.⁴⁰ This approach was also used for the Space Shuttle's SRBs, which were recovered from the ocean after a parachute-assisted splashdown.⁸

The following table provides a concise historical overview of major RLS programs, highlighting their architectural choices and outcomes.

Table 1: Chronology of Major Reusable Launch System Programs

Program Name	Sponsoring Entity	Operational Period/Status	Reusability Architecture	Key Outcome/Legacy
Space Shuttle	NASA	1981–2011	VTHL Orbiter, Parachute SRBs	First operational reusable spacecraft; enabled

				ISS/Hubble but failed to achieve low cost. ³
Buran/Energia	Soviet Union	1988 (1 flight)	VTHL Orbiter (similar to Shuttle)	Completed one uncrewed orbital flight but was canceled due to economic collapse. ¹
DC-X / DC-XA	SDIO / NASA	1993–1996	VTVL Suborbital Demonstrator	Proved feasibility of VTVL and rapid turnaround; inspired modern VTVL systems. ²²
Falcon 9 / Heavy	SpaceX	2015–Present (reusable ops)	VTVL Booster	First commercially successful orbital RLS; dramatically lowered launch costs. ³
New Shepard	Blue Origin	2015–Present	VTVL Suborbital System	Demonstrated VTVL for space tourism; technology pathfinder for New Glenn. ³
Electron	Rocket Lab	2020–Present (recovery ops)	Parachute / Mid-Air Capture	First reusable small-satellite launcher, pioneering mid-air

				helicopter capture. ³⁸
Starship	SpaceX	2023–Present (in testing)	Fully Reusable VTVL System	Aims to be the first fully reusable launch vehicle (booster and upper stage). ¹⁵
New Glenn	Blue Origin	In Development	VTVL Booster	Heavy-lift competitor to Falcon Heavy, designed for 25+ reuses. ³⁰
Themis	ESA / ArianeGroup	In Development	VTVL Demonstrator	European technology demonstrator for VTVL and methane-fueled engines. ³¹

Deep Dive into Enabling Subsystems

The successful implementation of reusability is not about perfecting a single technology but about the deep and complex integration of multiple interdependent subsystems. The choice of a VTVL architecture, for instance, necessitates the development of reignitable engines. This, in turn, creates challenges for propellant management (ullage) in zero-g, which must be solved by the attitude control system. The reentry trajectory exposes the vehicle to extreme aerodynamic forces, requiring specialized control surfaces like grid fins, which must be managed by a sophisticated GNC system capable of real-time trajectory optimization. This tightly coupled, systems-level integration is a key technological hurdle that distinguishes modern RLSs from their expendable predecessors.

- **Propulsion Systems:** Reusability places stringent demands on rocket engines. They must be robust enough to withstand the stresses of multiple flights and, crucially, be capable of reliable in-flight restart.⁴⁴ For the Falcon 9's Merlin engine, reignition is achieved using a hypergolic igniter fluid, Triethylaluminium-Triethylborane (TEA-TEB),

which combusts spontaneously upon contact with liquid oxygen. The rocket carries a finite supply of this fluid to perform the multiple burns required for landing.³² Furthermore, propellant choice is critical. While the Falcon 9 uses RP-1 (a refined kerosene), many next-generation reusable engines, including SpaceX's Raptor and Blue Origin's BE-4, have shifted to cryogenic liquid methane ().³⁰ Methane offers a compelling combination of higher performance than RP-1 and greater density than liquid hydrogen, but its key advantage for reusability is that it burns much cleaner, reducing engine soot and coking. This simplifies the inspection and refurbishment process between flights, enabling faster turnaround times.²⁹

- **Guidance, Navigation, and Control (GNC):** A sophisticated GNC system is the brain of a reusable booster. During atmospheric reentry at hypersonic speeds, aerodynamic control is essential. SpaceX pioneered the use of large, steerable **grid fins** for this purpose.⁴⁷ These lattice-like structures, stowed during ascent, deploy for reentry and provide high control authority with relatively low hinge moments, allowing the massive stage to be precisely steered.⁴⁸ The final powered landing phase represents a complex optimal control problem. The GNC system must calculate and execute a precise sequence of engine burns to nullify all vertical and horizontal velocity at the exact moment of touchdown, using the minimum possible amount of propellant. Modern guidance algorithms often employ **convex optimization** techniques, which can rapidly generate fuel-optimal landing trajectories onboard the vehicle in real-time, allowing the rocket to adapt to changing conditions during its descent.³⁹
- **Thermal Protection Systems (TPS):** While the reentry environment for a suborbital first stage is less severe than for a vehicle returning from orbit, TPS is still necessary to protect the vehicle's structure and engine bay from aerodynamic heating.³³ This is often achieved through a combination of heat-resistant materials, insulating blankets, and, innovatively, by using the engine exhaust itself during the reentry burn to create a plume that shields the base of the rocket from the hottest plasma flow.³³ For fully reusable systems like Starship, which must endure orbital reentry speeds, a much more robust TPS is required, drawing lessons from the Space Shuttle's ceramic tiles but aiming for far greater durability and lower maintenance.⁵²

The following table provides a structured comparison of the primary first-stage recovery architectures, highlighting their inherent engineering trade-offs.

Table 2: Comparison of First-Stage Recovery Architectures

Feature	VTVL (Propulsive Landing)	VTHL (Winged Glide-back)	Parachute / Mid-Air Capture

Key Examples	Falcon 9, New Glenn, Starship	Space Shuttle Orbiter, ReFEx	Electron, Space Shuttle SRBs
Primary Mass Penalty	Propellant for boostback, reentry, and landing burns. ¹⁰	Structural mass of wings, control surfaces, landing gear, and TPS. ²⁸	Mass of parachute system, control hardware, and potential structural reinforcement. ³⁷
GNC Complexity	Very High: Requires real-time optimal control for powered landing. ⁵⁰	High: Requires autonomous atmospheric flight and runway approach. ³⁵	Moderate: Requires controlled reentry and precise parachute deployment timing. ³⁷
Ground Infrastructure	Landing pad or autonomous drone ship. ¹⁵	Standard long runway. ¹⁴	Large open recovery zone (ocean/land) with ships and/or aircraft. ⁴⁰
Refurbishment Complexity	Focus on engine inspection, landing legs, and heat-affected areas. ¹⁸	Extensive inspection of wings, TPS, and aerodynamic control surfaces. ⁹	Potential saltwater corrosion (if splashed down); inspection of parachute system. ⁴⁰
Payload Performance Impact	Significant reduction compared to expendable mode due to propellant reserve. ¹⁰	Significant reduction due to high inert structural mass. ²⁸	Moderate reduction; less impactful for smaller vehicles. ³⁷

The Economic Calculus of Reusability

The fundamental economic premise of reusability is that the savings realized from avoiding

the recurring production of launch hardware will outweigh the additional costs associated with development, recovery, and refurbishment.⁵⁶ However, the history of the Space Shuttle provides a stark reminder that this outcome is not guaranteed. Its immense operational and refurbishment overhead made it significantly more expensive per flight than its expendable counterparts, demonstrating that a simplistic view of reusability can be misleading.⁸

Modeling Reusable vs. Expendable Costs

Comprehensive economic models are essential for evaluating the viability of an RLS. These models typically break down the total cost per launch into several key components:

1. **Non-recurring Development Costs:** The upfront investment in research, development, testing, and engineering. These costs are generally significantly higher for complex RLSs than for simpler expendable vehicles.⁵⁶
2. **Recurring Production Costs:** For an expendable vehicle, this is the cost of manufacturing a new rocket for each flight. For a reusable vehicle, this is the cost of producing a fleet of vehicles, which is then amortized over the total number of flights each vehicle is expected to perform.⁵⁶
3. **Flight Operations and Recovery Costs:** The costs associated with launch pad operations, mission control, and the infrastructure required to recover the reusable stage (e.g., drone ships, recovery teams).⁵⁸
4. **Refurbishment Costs:** The cost of inspecting, repairing, and recertifying a recovered stage for its next flight. This is a critical variable; for reusability to be economical, refurbishment costs must be only a small fraction of the cost of a new stage.¹⁸

The Critical Role of Launch Cadence

Academic and industry analyses consistently demonstrate that the economic viability of any RLS is profoundly dependent on its flight rate, or launch cadence.¹⁰ The high fixed costs associated with development and ground infrastructure must be amortized over a large number of missions. A low flight rate results in a prohibitively high cost per launch, negating the benefits of reuse.¹⁰ A 2021 study by Lionnet and Cuellar analyzing the economics of the Falcon 9 concluded that a reusable rocket must achieve a minimum of six to nine launches per year to surpass its break-even threshold and become more cost-effective than a comparable expendable vehicle.¹⁰ This underscores the necessity of a robust and consistent market

demand to make the reusability business case close.

Case Study: The Falcon 9 Market Disruption

SpaceX's Falcon 9 is the first and, to date, only orbital-class RLS to achieve widespread commercial success and validate the high-cadence economic model. By successfully and routinely reusing its first-stage booster, SpaceX has been able to dramatically reduce its launch prices.⁴ This has allowed the company to capture over 60% of the global commercial launch market and has forced legacy providers and new entrants alike to aggressively pursue their own reusability programs.⁶¹

The success of this model is not purely a technical achievement but also a strategic one. A key enabler of SpaceX's high launch cadence is the company's own internal demand generated by its Starlink satellite mega-constellation, which requires thousands of satellites to be launched.¹⁰ This captive manifest creates a self-reinforcing "flywheel" effect. The initial high investment in reusability is justified by the guaranteed high flight rate needed for Starlink. This high cadence allows SpaceX to rapidly amortize its fixed costs, gather extensive flight data, and accelerate the learning curve for refurbishment operations, which in turn drives down the marginal cost of each subsequent launch. These lower costs make its services even more competitive for external commercial and government customers, allowing it to capture more market share and further increase its launch rate. This dynamic illustrates that the economic success of reusability is not just about building a reusable rocket, but also about fostering or creating a market that can sustain the high flight rate it requires to be profitable.

Future Trajectories and Grand Challenges

As first-stage reusability becomes an industry standard, the focus of research and development is shifting toward even more ambitious goals and the broader implications of this new paradigm.

The Frontier of Full Reusability: Second-Stage Recovery

The next great leap in RLS technology is the recovery and reuse of the second (or upper)

stage, which would enable a fully reusable launch system. This represents a challenge an order of magnitude more difficult than first-stage recovery.⁴¹ The primary hurdles are twofold. First, the second stage must reach orbital velocity (approximately Mach 25) to deliver its payload, meaning it reenters the atmosphere at much higher speeds than a suborbital first stage (typically Mach 6-8).³⁷ This results in exponentially greater aerodynamic heating, necessitating a robust, reusable TPS capable of withstanding extreme temperatures over a prolonged period.⁴⁴ Second, the mass penalty is severe. Every kilogram of mass added to the upper stage for TPS, landing propellant, and landing systems is a kilogram directly subtracted from the vehicle's payload capacity, making the economic trade-off exceptionally challenging.⁴¹

Despite these difficulties, several programs are pursuing this goal. The most prominent is SpaceX's Starship, which is designed from the outset as a fully reusable second stage and spacecraft. Its architecture involves a "belly-flop" reentry maneuver to dissipate energy across a large surface area protected by ceramic tiles, followed by a final flip to a vertical orientation for a propulsive landing.¹⁵

The Global R&D Landscape

The pursuit of reusability has become a global endeavor, with space agencies and commercial companies worldwide investing in RLS technologies.

- **United States:** The U.S. remains at the forefront, with SpaceX operating the Falcon 9 and developing Starship, Blue Origin advancing its partially reusable New Glenn heavy-lift vehicle, and Rocket Lab iterating on its Electron recovery system while developing the fully reusable Neutron rocket.⁷
- **Europe:** The European Space Agency (ESA), in partnership with industry, is developing key technologies through several demonstrator programs. Themis is a VTVL demonstrator that will be powered by the reusable, methane-fueled Prometheus engine, serving as a pathfinder for a future European reusable launcher.⁴ The joint European-Japanese-French CALLISTO project is another demonstrator focused on mastering the technologies for vertical landing.³⁴
- **Asia:** China has made rapid and significant progress, with its state-owned enterprises testing VTVL recovery for Long March rockets and a dynamic private sector also developing reusable launchers.⁴ In India, the Indian Space Research Organisation (ISRO) is developing its own winged RLV technology, while private startups like Agnikul Cosmos are pursuing cost-effective, reusable small-satellite launchers.⁴

Policy, Legal, and Sustainability Implications

The proliferation of low-cost, reusable launch vehicles carries profound implications that extend beyond technology and economics into the realms of international policy, law, and environmental sustainability. The foundational legal framework for space activities, the 1967 Outer Space Treaty, holds states internationally responsible for all national space activities, whether conducted by governmental or non-governmental entities.⁶⁶ The rise of high-cadence commercial launch providers challenges traditional models of state supervision and liability, creating a need for updated regulatory frameworks that can accommodate this new pace of activity.⁶⁹

Furthermore, reusability presents a complex paradox for the long-term sustainability of the space environment. On one hand, reusability directly mitigates the problem of launch-related debris by recovering and reusing rocket stages that would otherwise be left to decay in orbit or fall back to Earth.⁷ On the other hand, the very economic success of reusability—the dramatic lowering of launch costs—is the primary enabler of mega-constellations comprising thousands of satellites.⁷ This massive increase in the number of objects in orbit paradoxically heightens the risk of orbital congestion, in-space collisions, and the proliferation of debris from defunct satellites.⁷ This "Reusability Paradox" suggests that while reusability solves one environmental problem, it acts as a catalyst for a potentially much larger one. This reality makes the widespread adoption of reusable technology a legal and ethical imperative, but also highlights the urgent need for a corresponding evolution in international policy, shifting the focus from simply regulating launch to managing the entire lifecycle of objects in orbit.⁷⁰

Synthesis: Identified Research Gaps and Recommendations for Future Work

This review of the literature on reusable launch systems reveals a field in rapid transition, moving from theoretical concepts to operational realities. While significant progress has been made, particularly in the domain of first-stage VTVL recovery, several critical research gaps remain that offer fertile ground for future academic and industrial investigation.

Gap 1: High-Fidelity Economic and Operational Modeling. While conceptual economic models provide a framework for comparing reusable and expendable systems⁵⁶, a significant gap exists in the public domain regarding empirically validated data on the true costs of refurbishment. Key variables such as the learning curve associated with repeated reuse operations, the optimal fleet size for a given launch cadence, and the true cost of inspection

and repair remain largely proprietary. Conflicting viewpoints persist, with some analyses suggesting that for certain high-energy missions, fully expendable vehicles may still offer a lower cost-per-kilogram of payload.⁵⁹

- *Future Research:* There is a pressing need for the development of advanced, probabilistic cost models that can incorporate variables for refurbishment learning curves, supply chain dynamics for reusable components, and the elasticity of market demand to changes in launch pricing. Such models would be invaluable for determining the true economic break-even points for different RLS architectures under a variety of market scenarios.

Gap 2: Technologies for Full and Rapid Reusability. The technological leap from partial to full reusability remains a formidable challenge, with significant gaps in enabling technologies.⁴⁴

- *Future Research (TPS):* The development of lightweight, durable, and low-maintenance TPS materials capable of withstanding numerous orbital reentries is a critical area of research. This includes work on advanced ceramic matrix composites, metallic TPS concepts, and novel approaches such as active thermal management or inflatable aerodynamic decelerators.¹⁴
- *Future Research (Propulsion and Propellant Management):* For reusable upper stages, further research is required in long-duration cryogenic fluid management to mitigate propellant boil-off during extended on-orbit operations.⁷⁴ Additionally, continued research into advanced materials and coatings that resist the extreme thermal and oxidative environment within rocket engines is needed to enhance component life and reliability over dozens of flight cycles.⁴⁵

Gap 3: Holistic Multidisciplinary Design Optimization (MDO) Frameworks. Much of the existing academic literature focuses on the optimization of specific RLS subsystems in isolation, such as GNC for propulsive landing⁵⁰ or the aerodynamic design of grid fins.⁴⁹ There is a notable absence of comprehensive, open-source MDO frameworks that can optimize an entire RLS by simultaneously considering the tightly coupled interactions between aerodynamics, propulsion, structures, GNC, and lifecycle economics.²⁹

- *Future Research:* The creation of integrated MDO tools would allow for rapid and holistic trade-off analysis of novel RLS concepts. Such a framework could, for example, quantify the total system-level impact of choosing a winged VTHL architecture versus a VTVL one, capturing the cascading effects on structural mass, payload performance, development cost, and operational complexity.

Gap 4: Proactive Space Policy and Law. As highlighted by the "Reusability Paradox," the legal and regulatory frameworks governing space are lagging behind the technological and commercial reality. The principles-based Outer Space Treaty was not designed for an era of high-cadence, commercially dominated space activity.⁶⁹

- *Future Research:* There is a critical need for policy-focused research aimed at developing new international norms, standards, and regulations for space traffic management, mandatory end-of-life de-orbit capabilities for all satellites, and clear liability frameworks for in-orbit events in the congested orbital environment enabled by low-cost, reusable launch.

Works cited

1. A History of Reusable Launch Vehicles: Past, Present, and Future - New Space Economy, accessed on October 6, 2025, <https://newspaceeconomy.ca/2025/08/11/a-history-of-reusable-launch-vehicles-past-present-and-future/>
2. DESIGN AND ECONOMIC ASPECTS OF REUSABLE LAUNCH VEHICLES AND CONSIDERATIONS FOR FUTURE SYSTEMS, accessed on October 6, 2025, <https://ntrs.nasa.gov/api/citations/19680027150/downloads/19680027150.pdf>
3. Reusable spacecraft | Research Starters - EBSCO, accessed on October 6, 2025, <https://www.ebsco.com/research-starters/engineering/reusable-spacecraft>
4. (PDF) The Rise of Reusable Rockets- A new frontier in the Age of Space Exploration, accessed on October 6, 2025, https://www.researchgate.net/publication/394948751_The_Rise_of_Reusable_Rockets-_A_new_frontier_in_the_Age_of_Space_Exploration
5. The Rise of Reusable Rockets- A New Frontier in the Age of Space Exploration - Journal of Student Research, accessed on October 6, 2025, <https://www.jsr.org/hs/index.php/path/article/download/8654/3895/55910>
6. The Rise of Reusable Rockets- A new frontier in the Age of Space Exploration, accessed on October 6, 2025, <https://www.jsr.org/hs/index.php/path/article/view/8654>
7. How Fully Reusable Rockets Are Transforming Spaceflight - Global Aerospace, accessed on October 6, 2025, <https://www.global-aero.com/how-fully-reusable-rockets-are-transforming-spaceflight/>
8. Space Shuttle, the World's First Reusable... | The Planetary Society, accessed on October 6, 2025, <https://www.planetary.org/space-missions/space-shuttle>
9. NASA Space Shuttle history | BBC Sky at Night Magazine, accessed on October 6, 2025, <https://www.skyatnightmagazine.com/space-missions/history-nasa-space-shuttle>
10. The Missing Rocket: An Economic and Engineering Analysis of the ..., accessed on October 6, 2025, <https://www.intereconomics.eu/contents/year/2025/number/2/article/the-missing-rocket-an-economic-and-engineering-analysis-of-the-reusability-dilemma-in-the-european-space-sector.html>
11. Toward a History of the Space Shuttle | NASA, accessed on October 6, 2025, <https://www.nasa.gov/wp-content/uploads/2023/04/sp-4501-shuttle-bibliography-1.pdf>

12. Reusable Launch Vehicles: Evolution Redefined - Longdom Publishing, accessed on October 6, 2025,
<https://www.longdom.org/open-access/reusable-launch-vehicles-evolution-redefined-7320.html>
13. Space Shuttle - Wikipedia, accessed on October 6, 2025,
https://en.wikipedia.org/wiki/Space_Shuttle
14. Reusable launch vehicle - Wikipedia, accessed on October 6, 2025,
https://en.wikipedia.org/wiki/Reusable_launch_vehicle
15. Reusable Rockets: the History and Progress - impulso.space, accessed on October 6, 2025, <https://impulso.space/tools/blog/posts/reusable-rockets>
16. The Space Shuttle - NASA, accessed on October 6, 2025,
<https://www.nasa.gov/reference/the-space-shuttle/>
17. The Space Shuttle Program: How NASA Made Reusable Spacecraft - YouTube, accessed on October 6, 2025, <https://www.youtube.com/watch?v=3LiyulrkeUM>
18. A FRAMEWORK FOR ASSESSING THE REUSABILITY OF HARDWARE (REUSABLE ROCKET ENGINES INTRODUCTION Within the past few years, there has, accessed on October 6, 2025,
<https://ntrs.nasa.gov/api/citations/20170000606/downloads/20170000606.pdf>
19. ORNL, Sierra Space create new thermal protection system for reusable space vehicles, accessed on October 6, 2025,
<https://www.ornl.gov/news/ornl-sierra-space-create-new-thermal-protection-system-reusable-space-vehicles>
20. DC-X/Delta Clipper - Maxwell Hunter, accessed on October 6, 2025,
<http://www.maxwellhunter.com/projects/dcx>
21. The McDonnell Douglas DC-X: Testing the Reusable Rocket Technology | Space Voyaging, accessed on October 6, 2025,
<https://www.spacevoyaging.com/insights/2024/09/16/the-mcdonnell-douglas-dc-x-testing-the-reusable-rocket-technology/>
22. McDonnell Douglas DC-X - Wikipedia, accessed on October 6, 2025,
https://en.wikipedia.org/wiki/McDonnell_Douglas_DC-X
23. The Flying Traffic Cone: Delta Clipper Experimental (DC-X) - SpaceflightHistories, accessed on October 6, 2025, https://www.spaceflighthistories.com/post/_dc-x
24. DC-X: The NASA rocket that inspired SpaceX and Blue Origin | Astronomy.com, accessed on October 6, 2025,
<https://www.astronomy.com/space-exploration/dc-x-the-nasa-rocket-that-inspired-spacex-and-blue-origin/>
25. Concepts of Operations for a Reusable Launch Vehicle - DoD - Department of Defense, accessed on October 6, 2025,
https://media.defense.gov/2017/Dec/27/2001861503/-1/-1/0/T_0024_RAMPINO_CONCEPTS_OF_OPERATIONS.PDF
26. The Delta Clipper Experimental Advanced (DC-XA) was a reusable rocket NASA tested in the mid-1990s that pioneered vertical launch and landing. And although it failed to land and exploded in 1996, it also set the stage for today's SpaceX and Blue Origin rocket designs. : r/space - Reddit, accessed on October 6, 2025,
https://www.reddit.com/r/space/comments/dp7orc/the_delta_clipper_experiment

al_advanced_dcxa_was/

- 27. Winged, accessed on October 6, 2025,
<http://www.astronautix.com/w/winged.html>
- 28. Horizontal versus vertical landing - Deutsches Zentrum für Luft- und Raumfahrt, accessed on October 6, 2025,
<https://www.dlr.de/en/research-and-transfer/featured-topics/reusable-space-transportation/horizontal-versus-vertical-landing>
- 29. Multidisciplinary Design Optimization of Reusable Launch Vehicles ..., accessed on October 6, 2025, <https://arc.aiaa.org/doi/10.2514/1.A34944>
- 30. New Glenn | Blue Origin, accessed on October 6, 2025,
<https://www.blueorigin.com/new-glenn>
- 31. Themis - ESA, accessed on October 6, 2025,
https://www.esa.int/Enabling_Support/Space_Transportation/Themis
- 32. spacex - How do the Falcon 9 engines re-ignite? - Space ..., accessed on October 6, 2025,
<https://space.stackexchange.com/questions/13953/how-do-the-falcon-9-engines-re-ignite>
- 33. Aerothermal Analysis of Re-usable First Stage during Rocket Retro-propulsion, accessed on October 6, 2025, https://elib.dlr.de/119265/1/SADA_ITLR.pdf
- 34. Reusable space transport - Deutsches Zentrum für Luft- und Raumfahrt, accessed on October 6, 2025,
<https://www.dlr.de/en/research-and-transfer/featured-topics/reusable-space-transportation/>
- 35. Glide back recovery of a winged reusable launch vehicle with wind estimate - eucass, accessed on October 6, 2025,
<https://www.eucass.eu/doi/EUCASS2022-4802.pdf>
- 36. ReFEx – Reusability Flight Experiment, accessed on October 6, 2025,
<https://www.dlr.de/en/research-and-transfer/projects-and-missions/refex>
- 37. Return to Sender: Lessons Learned from Rocket Lab's First Recovery Mission - DigitalCommons@USU, accessed on October 6, 2025,
<https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=5031&context=smallsat>
- 38. Analysis of Progress Toward the World's First Reusable Commercial Small Rocket - DigitalCommons@USU, accessed on October 6, 2025,
<https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=5273&context=smallsat>
- 39. Operational Atmospheric Landing Guidance for Reusable Rockets - Aerospace Research Central, accessed on October 6, 2025,
<https://arc.aiaa.org/doi/pdfplus/10.2514/6.2025-2597>
- 40. Rocket Lab's next launch will feature mid-air booster recovery attempt - Spaceflight Now, accessed on October 6, 2025,
<https://spaceflightnow.com/2022/11/03/rocket-labs-next-launch-will-feature-mid-air-booster-recovery-attempt/>
- 41. Why SpaceX does not recover their second stage : r/space - Reddit, accessed on October 6, 2025,

https://www.reddit.com/r/space/comments/n4mi4/why_spacex_does_not_recover_their_second_stage/

42. New Glenn - Wikipedia, accessed on October 6, 2025,
https://en.wikipedia.org/wiki/New_Glenn
43. Themis programme - Wikipedia, accessed on October 6, 2025,
https://en.wikipedia.org/wiki/Themis_programme
44. Challenges of Reusable Spacecraft — STEM Journal, accessed on October 6, 2025, <https://www.stem-journal.com/blog/challenges-of-reusable-spacecraft>
45. Boosting rocket reliability at the material level | MIT News, accessed on October 6, 2025, <https://news.mit.edu/2023/boosting-rocket-reliability-material-level-1128>
46. Five things to know about New Glenn, Blue Origin's new rocket - Space Daily, accessed on October 6, 2025,
https://www.spacedaily.com/reports/Five_things_to_know_about_New_Glenn_Blue_Origins_new_rocket_999.html
47. Grid Fins & Rocket guidance - Space 'n' Science, accessed on October 6, 2025, <https://www.spaceandscience.fr/en/blog/grid-fins>
48. Design and Analysis of a Typical Grid Fin for Aerospace Application - IRJET, accessed on October 6, 2025, <https://www.irjet.net/archives/V7/I7/IRJET-V7I7537.pdf>
49. (PDF) Grid fins shape design of a launch vehicle based on ..., accessed on October 6, 2025,
https://www.researchgate.net/publication/326397803_Grid_fins_shape_design_of_a_launch_vehicle_based_on_sequential_approximation_optimization
50. Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing, accessed on October 6, 2025,
https://elib.dlr.de/140559/1/Onboard_Guidance_for_Reusable_Rockets_PD_L.pdf
51. Operational Atmospheric Landing Guidance for Reusable Rockets | AIAA SciTech Forum, accessed on October 6, 2025, <https://arc.aiaa.org/doi/10.2514/6.2025-2597>
52. Space Shuttle thermal protection system - Wikipedia, accessed on October 6, 2025, https://en.wikipedia.org/wiki/Space_Shuttle_thermal_protection_system
53. Thermal Protection and Control - NASA Technical Reports Server (NTRS), accessed on October 6, 2025,
<https://ntrs.nasa.gov/api/citations/20140002341/downloads/20140002341.pdf>
54. How Different Are SpaceX Thermal Tiles From The Space Shuttle's? - Hackaday, accessed on October 6, 2025,
<https://hackaday.com/2024/02/14/how-different-are-spacex-thermal-tiles-from-the-space-shuttles/>
55. The Bestagons: Starship's Upgraded Heat Shield - Ringwatchers, accessed on October 6, 2025, <https://ringwatchers.com/article/s33-tps>
56. Economic Model of Reusable vs. Expendable Launch Vehicles ..., accessed on October 6, 2025,
<https://smad.com/economic-model-reusable-vs-expendable-launch-vehicles/>
57. Cost Effectiveness of Reusable Launch Vehicles Depending on the Payload Capacity, accessed on October 6, 2025,
<https://www.mdpi.com/2226-4310/12/5/364>

58. reusable propulsion architecture for sustainable low-cost access to space - NASA Technical Reports Server (NTRS), accessed on October 6, 2025,
<https://ntrs.nasa.gov/api/citations/20060004772/downloads/20060004772.pdf>
59. The Economics of Rocket Reusability, accessed on October 6, 2025,
<https://www.iceaaonline.com/wp-content/uploads/2023/06/TT08-Timm-Economics-of-Rocket-Reusability-ppt.pdf>
60. Does Reusability of rocket really save cost : r/AerospaceEngineering - Reddit, accessed on October 6, 2025,
https://www.reddit.com/r/AerospaceEngineering/comments/1g39cky/does_reusability_of_rocket_really_save_cost/
61. Reusable Rockets vs. Disposable Rockets: Market Trends and Cost Reduction Stats, accessed on October 6, 2025,
<https://patentpc.com/blog/reusable-rockets-vs-disposable-rockets-market-trends-and-cost-reduction-stats>
62. What are the challenges in recovering Falcon 9's second stage this way?, accessed on October 6, 2025,
<https://space.stackexchange.com/questions/44582/what-are-the-challenges-in-recovering-falcon-9s-second-stage-this-way>
63. Blue Origin's New Glenn vs. SpaceX's Falcon 9, accessed on October 6, 2025,
<https://newspaceeconomy.ca/2025/01/15/blue-origins-new-glenn-vs-spacexs-falcon-9/>
64. Building on patents and test success, Agnikul eyes fully reusable rockets, accessed on October 6, 2025,
<https://timesofindia.indiatimes.com/science/building-on-patents-and-test-success-agnikul-eyes-fully-reusable-rockets/articleshow/124209953.cms>
65. India's Agnikul Cosmos readying Falcon-9-like reusable rocket, flight test soon, accessed on October 6, 2025,
<https://www.indiatoday.in/science/story/indias-agnikul-cosmos-readying-falcon-9-like-reusable-rocket-flight-test-soon-2795063-2025-09-29>
66. Outer Space Treaty | Oxford Research Encyclopedia of Planetary Science, accessed on October 6, 2025,
<https://oxfordre.com/planetaryscience/display/10.1093/acrefore/9780190647926.01.0001/acrefore-9780190647926-e-43?d=%2F10.1093%2Facrefore%2F9780190647926.001.0001%2Facrefore-9780190647926-e-43&p=emailAKcv930T3IT9U>
67. 2222 (XXI). Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies - UNOOSA, accessed on October 6, 2025,
<https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspacetreaty.html>
68. The Outer Space Treaty - UNOOSA, accessed on October 6, 2025,
<https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html>
69. Regulating Commercial Space Activity | The Regulatory Review, accessed on October 6, 2025,
<https://www.theregreview.org/2020/06/06/saturday-seminar-regulating-commercial-space-activity/>

[cial-space-activity/](#)

70. To Infinity and Beyond (And Beyond): The Legal and Ethical ..., accessed on October 6, 2025,
<https://dltr.law.duke.edu/2025/04/04/to-infinity-and-beyond-and-beyond-the-legal-and-ethical-imperative-for-rocket-reusability/>
71. Thermal Protection Systems - Orbital Composites, accessed on October 6, 2025,
<https://www.orbitalcomposites.com/thermal-protection-systems>
72. reusable metallic thermal protection systems development, accessed on October 6, 2025,
<https://ntrs.nasa.gov/api/citations/20040095922/downloads/20040095922.pdf>
73. Heat Shields & Thermal Protection Systems for Spacecraft 2025-2035: Technologies and Market Outlook - IDTechEx, accessed on October 6, 2025,
<https://www.idtechex.com/en/research-report/heat-shields-and-thermal-protection-systems-for-spacecraft/1085>
74. Is Second Stage Reuse Inevitable? : r/spacex - Reddit, accessed on October 6, 2025,
https://www.reddit.com/r/spacex/comments/4wkvgc/is_second_stage_reuse_inevitable/